
31/08/2016

1

Finite State Machines

Tópicos Avançados em
Engenharia de Software

Prof. Dr. Rogério Eduardo Garcia

Finite State Machines

� FSM é um modelo matemático de um sistema que assume:

� O sistema pode ser mapeado em # finito de condições chamados
estados

� O comportamento do sistema em um dado estado é sempre o
mesmo

� O sistema permanece em estados por período significante de tempo

� O sistema pode mudar de estados somente em um # finito de
modos, chamados transições

� Transições são a resposta do sistema para eventos externos ou
internos

� Funções ou operações chamadas ações podem ser executadas
quando uma transição acontece, entra em estado, ou sai de um
estado
� Implementado por operações de um objeto

� Transições e ações levam (aproximadamente) são instantâneas
� “síncronas”

� Eventos não permitidos em um estado são ignorados ou resultam em
um erro ou, ainda, são enfileirados

31/08/2016

2

Finite State Machines

� FSM = (Inputs, Outputs, States, InitialState,

NextState, Outs)

� Adequadas para controladores, protocolos,

etc

� Não são completos (Turing), mas mais fáceis

de analisar

� Fácil para usar em conjunto com algoritmos

de síntese e verificação

FSM Exemplos

Elevador Controle

Fonte: B. P. Douglass & iLogix

31/08/2016

3

FSM Exemplo

� Especificação Informal
se um motorista liga a chave e não põe o cinto de
segurança em 5 segundos, o alarme deve disparar
por 5 segundos ou até que o cinto seja colocado, ou
a chave seja desligada

� Representação Formal
Inputs = {KEY_ON, KEY_OFF, BELT_ON,
BELT_OFF, 5_SECONDS_UP, 10_SECONDS_UP}

Outputs = {START_TIMER, ALARM_ON,
ALARM_OFF}

States = {Off, Wait, Alarm}

Initial State = off

NextState: CurrentState, Inputs ->
NextState

e.g. NextState(WAIT, {KEY_OFF}) = OFF

Outs: CurrentState, Inputs -> Outputs

e.g. Outs(OFF, {KEY_ON}) = START_TIMER

FSM Não-Determinística

� Uma FSM é dita não-determinística quando o

estado seguinte (NextState) e as funções de

saída podem ser relações (ao invés de

funções)

� Não-determinismo pode ser mais fácil de

modelar:

� Comportamento não especificado

� Especificação Incompleta

� Comportamento não-conhecido

� e.g., o modelo do ambiente

31/08/2016

4

NDFSM: time range

� Special case of unspecified/unknown behavior, but so common to

deserve special treatment for efficiency

� E.g. delay between 6 and 10 s

0

1 2 3 4

5

6

78

9

START => SEC =>

SEC => END

SEC => SEC =>

SEC =>

SEC =>

SEC =>
SEC =>

SEC =>

START =>

SEC =>

END

SEC => END

SEC =>

END

Are NDFSM and FSM equivalent?

NDFSMs and FSMs

� Formally FSMs and NDFSMs are equivalent

� (Rabin-Scott construction, Rabin ‘59)

� In practice, NDFSMs are often more compact

� (exponential blowup for determinization)

s1

s2 s3

a

a

b

a

c

s1

s2,s3

a

s3
b

a

s2

c

ba

s1,s3
c

a

c

31/08/2016

5

Características de FSMs

� O conjunto de estados define o espaço de estados
válidos

� Espaço de estados são flat
� Todos os estados estão no mesmo nível de abstração
� Todos os nomes de estados são únicos

� Modelos de Estados são single thread
� Somente um único estado pode ser válido em um tempo t

� Todas as ações são sobre um estado de entrada
� Não-reativa (resposta demora um ciclo)
� Fácil de compor (sempre bem definido)
� Bom para implementação

� Todas ações estão em transições
� Reativa (tempo de resposta é zero)

Source: B. P. Douglass & iLogix

Problemas com FSM
Convensional

� Superespecificado

� Sequencia completamente especificada

� Escalabilidade – devido à falta de metáfora

para decomposição

� Número de estados pode ser difícil de gerenciar

� Não suporta concorrência

� Não suporta para conexões ortogonais

Source: B. P. Douglass & iLogix

31/08/2016

6

Escalabilidade

Source: B. P. Douglass & iLogix

Escalabilidade

Source: B. P. Douglass & iLogix

31/08/2016

7

Concorrência

� Problema:
� Um dispositivo pode estar em estados

� Off, Starting-up, Operational, Error

� E pode estar em execução usando

� mains, battery

� Como organizar esses estados?

Fonte: B. P. Douglass & iLogix

Concorrência

� Estados “combinados” :

� Operation com battery

� Operation com mains

� Leva à explosão de estados

� Solução?

� Permitir estados para operar concorrentemente

Source: B. P. Douglass & iLogix

31/08/2016

8

Solução

Source: B. P. Douglass & iLogix

Solução: modelo de estados
concorrentes

Source: B. P. Douglass & iLogix

31/08/2016

9

Componentes Ortogonais

Como modelar os estados desse objeto?

Source: B. P. Douglass & iLogix

Abordagem 1: Enumerar todos

Source: B. P. Douglass & iLogix

31/08/2016

10

Abordagem 2

Source: B. P. Douglass & iLogix

StateCharts

� Conventional FSMs are inappropriate for the behavioral description
of complex control

� Flat and unstructured

� Inherently sequential in nature

� Give rise to an exponential blow-up in # of states

� Small system extensions cause unacceptable growth in the number of states
to be considered

� StateCharts support:

� Repeated decomposition of states into AND/OR sub-states

� Nested states, concurrency, orthogonal components

� Actions (may have parameters)

� Activities (functions executed as long as state is active)

� Guards

� History

� A synchronous (instantaneous broadcast) comm. mechanism

31/08/2016

11

Hierarchical FSM models

� Problem: how to reduce the size of the representation?

� Harel’s classical papers on StateCharts (language) and bounded

concurrency (model): 3 orthogonal exponential reductions

� Hierarchy:

� State a “encloses” an FSM

� Being in a means FSM in a is active

� States of a are called OR states

� Used to model pre-emption and exceptions

� Concurrency:

� Two or more FSMs are simultaneously active

� States are called AND states

� Non-determinism:

� Used to abstract behavior

error

a

recovery

odd

even

done

a1 a2

Introducing hierarchy

FSM will be in exactly one of

the substates of S if S is

active
(either in A or in B or ..)

�Classical automata not

useful for complex

systems (complex

graphs cannot be

understood by humans).

�Introduction of

hierarchy

�StateCharts [Harel,

1987]

31/08/2016

12

Features of StateCharts

� Nested states and hierarchy

� Improves scalability and understandability

� helps describing preemption

� Concurrency - two or more states can be

viewed as simultaneously active

� Nondeterminism - there are properties which

are irrelevant

Definitions

ancestor state of E
superstate

substates

� Current states of FSMs are also called active states.

� States which are not composed of other states are called basic states.

� States containing other states are called super-states.

� For each basic state s, the super-states containing s are called ancestor
states.

� Super-states S are called OR-super-states, if exactly one of the sub-states

of S is active whenever S is active.

31/08/2016

13

Default state mechanism

�Try to hide internal

structure from

outside world!

� Default state

� Filled circle

indicates sub-state

entered whenever

super-state is

entered.

� Not a state by

itself!

History mechanism

� For input m, S enters the state it was in before S was

left (can be A, B, C, D, or E). If S is entered for the

very first time, the default mechanism applies.

� History and default mechanisms can be used

hierarchically.

(behavior different from last slide)

31/08/2016

14

Combining history and default
state mechanism

same meaning

Concurrency

�Convenient ways of describing concurrency are

required.

�AND-super-states: FSM is in all (immediate) sub-

states of a super-state; Example:

31/08/2016

15

Entering and leaving
AND-super-states

� Line-monitoring and key-monitoring are

entered and left, when service switch is

operated.

incl.

Benefits of AND-decomposition

V,W

V,Z

X,Z

X,W

V,Y

X,Y

Q R

k h

g

e
e

f

p

e
p

e

g

k

p

n
m,p

m,p

h

e
V

X

Z

Y

W

U

S T

Q R

e

k

h

e m

p

g

n e

f
[in(Y)]

31/08/2016

16

AND/OR State Comparison
� AND-states have orthogonal state components

� AND-decomposition can be carried out on any level of states

� more convenient than allowing only one level of communicating

FSMs

� OR-states have sub-states that are related to each other by
exclusive-or (e.g. U, V)

S

T

V

e

f

f

h

g[c]

S

T

V

e

f

h

g[c]

U

Timers

� Since time needs to be modeled in embedded systems,

� timers need to be modeled.

� In StateCharts, special edges can be used for timeouts.

If event a does not happen while the system is in the left

state for 20 ms, a timeout will take place.

31/08/2016

17

Using timers in answering
machine

General form of edge labels

� The general syntax of an expression labeling a transition in a
StateChart is n[c]/a, where

� n is the event that triggers the transition

� c is the condition that guards the transition
(cannot be taken unless c is true when e occurs)

� a is the action that is carried out if and when the transition is
taken

� Alternative: name(params)[guards]^event_list/action_list

� Event list, aka propagated transitions, is a list of transitions that
occur in other concurrent state machines because of this
transitions

� For each transition label, event condition and action are optional

� an event can be the changing of a value

� standard comparisons are allowed as conditions and assignment
statements as actions

event [condition] / action

31/08/2016

18

Transitions

Conditional Transitions

Source: B. P. Douglass & iLogix

31/08/2016

19

StateCharts Actions and
Events

� An action A on the edge leaving a state may also

appear as an event triggering a transition going into

an orthogonal state

� Executing the first transition will immediately cause

the second transition to be taken simultaneously

� Actions and events may be associated to the

execution of orthogonal components:

� action start(A) causes activity A to start

� event stopped(B) occurs when activity B stops

� entered(S), exited(S), in(S) etc.

Communication in Concurrent
FSMs

� Broadcast events

� Events are received by more than one concurrent

FSM

� Results in transitions of the same name in

different FSM

� Propagated transitions

� Transitions which are generated as a result of

transitions in other FSMs

31/08/2016

20

Propagations and Broadcasts

Source: B. P. Douglass & iLogix

Order of Nested Actions

� Executed from outermost – in on entry

� Executed from innermost – out on exit

Source: B. P. Douglass & iLogix

31/08/2016

21

The StateCharts simulation
phases (StateMate Semantics)

� How are edge labels evaluated?

� Three phases:

� Effect of external changes on events and conditions is
evaluated,

� The set of transitions to be made in the current step and
right hand sides of assignments are computed,

� Transitions become effective, variables obtain new values.

� Separation into phases 2 and 3 guarantees

deterministic and reproducible behavior.

Example

� In phase 2, variables a and b are assigned to temporary
variables. In phase 3, these are assigned to a and b. As a
result, variables a and b are swapped.

� In a single phase environment, executing the left state first
would assign the old value of b (=0) to a and b. Executing the
right state first would assign the old value of a (=1) to a and b.
The execution would be nondeterministic.

31/08/2016

22

Reflects model of clocked
hardware

�In an actual clocked (synchronous) hardware

system, both registers would be swapped as well.

Same separation into phases found in other languages as
well, especially those that are intended to model hardware.

Steps

�Execution of a StateChart model consists of a

sequence of (status, step) pairs

Status= values of all variables + set of events + current time

Step = execution of the three phases (StateMate semantics)

Status
phase 2

31/08/2016

23

Evaluation of StateCharts

� Pros:

� Hierarchy allows arbitrary nesting of AND- and OR-

super states.

� (StateMate-) Semantics defined in a follow-up paper

to original paper.

� Large number of commercial simulation tools

available

(StateMate, StateFlow, BetterState, ...)

� Available „back-ends“ translate StateCharts into C

or VHDL, thus enabling software or hardware

implementations.

Evaluation of StateCharts

� Cons:

� Generated C programs frequently inefficient,

� Not useful for distributed applications,

� No program constructs,

� No description of non-functional behavior,

� No object-orientation,

� No description of structural hierarchy.

Extensions:
Module charts for description of structural hierarchy.

31/08/2016

24

Example of the Power of
StateChart Formalism

� Conflicting function & control behaviors
� Function: primary service of the entity

� Control: actions performed within the system context

� Solutions: single automaton, two peer concurrent
states

ReadyToSendA

ReadyToSendB

SendingA SendingB

ackA/

ackB/

send/^B

send/^A

Uninitialized

Initialized

Operational

Error

reset/

stop/ start/

data/

reset/

error/

data/

The Combined State Machine in
StateChart Formalism

Uninitialized

Initialized

Operational

Error

reset/

stop/ start/

data/

reset/

error/

data/

ReadyToSendA

ReadyToSendB

SendingA SendingB

ackA/

ackB/

send/^B

send/^A

31/08/2016

25

Concurrent Statecharts

� Many embedded systems consist of multiple threads, each
running an FSM

� State charts allow the modeling of these parallel threads

Source: B. P. Douglass & iLogix

Concurrent Statecharts

� States S and T are active at the same time as long

as X is active

� Either S.A or S.B must be active when S is active

� Either T.C, T.D or T.E must be active when T is active

Source: B. P. Douglass & iLogix

31/08/2016

26

Concurrent Statecharts

� When X exits, both S and T exit

� If S exits first, the FSM containing X must wait until T exits

� If the two FSMs are always independent, then they must
be enclosed at the highest scope

Source: B. P. Douglass & iLogix

Example Concurrent FSM

Source: B. P. Douglass & iLogix

31/08/2016

27

Explicit Synchronization

Source: B. P. Douglass & iLogix

Example: Coke Machine
Version 1.0

� Suppose you have a soda machine:
� When turned on, the machine waits for money

� When a quarter is deposited, the machine waits for another
quarter

� When a second quarter is deposited, the machine waits for
a selection

� When the user presses “COKE,” a coke is dispensed

� When the user takes the bottle, the machine waits again

� When the user presses either “SPRITE” or “DIET COKE,” a
Sprite or a diet Coke is dispensed

� When the user takes the bottle, the machine waits again

31/08/2016

28

Coke Machine 1.0

idle 50c25c

dispense

coke

dispense

sprite

dispense

diet coke

q q

take

bottle

take

bottle
take

bottle

cb

cs

cd

Coke Machine, Version 2.0

� Bottles can get stuck in the machine
� An automatic indicator will notify the system when a bottle

is stuck

� When this occurs, the machine will not accept any money
or issue any bottles until the bottle is cleared

� When the bottle is cleared, the machine will wait for money
again

� State machine changes

� How many new states are required?

� How many new transitions?

31/08/2016

29

Coke Machine, Version 2.0

idle 50c25c

dispense

coke

dispense

sprite

dispense

diet coke

q q

take

bottle

take

bottle
take

bottle

cb

cs

cd

stuck

coke

clear bottle

Coke Machine, Version 2.0

idle 50c25c

dispense

coke

dispense

sprite

dispense

diet coke

q q

take

bottle

take

bottle
take

bottle

cb

cs

cd

stuck

bottle

clear bottle

31/08/2016

30

Coke Machine, Version 2.1

� Bottles sometimes shake loose
� An additional, automatic indicator will indicate that the

bottle is cleared

� When the bottles are cleared, the machine will return to the
same state it was in before the bottle got stuck

� State machine changes

� How many new states are required?

� How many new transitions?

Coke Machine, Version 3.0

� Automatic bottle filler

� If a button is pressed, the machine will toggle between bottle filling and

dispensing modes

� When in bottle filling mode:

� Bottles may be inserted if the Coke machine is ready

� When a bottle is inserted, the machine will NOT be ready to accept another
bottle and will check the bottle

� If the bottle check finds a Coke was inserted, it will signal Coke_OK and return
to ready

� If the bottle check finds a Diet Coke was inserted, the coke machine will signal
Diet_OK and return to ready

� Otherwise, the bottle will be immediately dispensed

� State machine changes

� How many new states are required?

� How many new transitions?

31/08/2016

31

Bottle Dispenser

dispensingcollecting

button

take bottle

Bottle Dispenser

dispensingcollecting

take bottle

idle

50c

25c

q

q

dispense

coke

dispense

sprite

dispense

diet coke

cb

cd

cs

31/08/2016

32

dispensingcollecting

take bottle

idle

50c

25c

q

q

dispense

coke

dispense

sprite

dispense

diet coke

cb

cd

cs

stuck

bottle

stick

stick
clear

bottle

Adding History

dispensingcollecting

take bottle

idle

50c

25c

q

q

dispense

coke

dispense

sprite

dispense

diet coke

cb

cd

cs

stuck

bottle

stick

stick
clear

bottle

HH

31/08/2016

33

Adding Conditionals

dispensingcollecting

take bottle

idle

50c

25c

q

q

dispense

coke

dispense

sprite

dispense

diet coke

(c)

choose (d)

stuck

bottle

stick

stick
clear

bottle

C

(s)

StateChart Example – TV
Controller

� 8 channels

� Buttons:
� Standby

� Channel: +/–

� Volume: ∆+, ∆–

� Contrast/Color/

� Brightness: ρ

� Pict. Adjust: ≡+, ≡–

� Missing details for:
� volume /

� brightness / color /

� contrast selection

31/08/2016

34

Example – TV
Remote

� Independent

states

� Timer

� Channel – split

into two states

� Sound

� Clock

