Fisica Ill — Sears, Zemansky,
Young & Freedman.
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Capitulo 22



22.1: a) ®=E-A=(14 N/C)(0.250 m?) cos 60° =1.75 Nm?/C.
b) As long as the sheet is flat, its shape does not matter.
ci) The maximum flux occurs at an angle ¢ = 0° between the normal and field.
cii) The minimum flux occurs at an angle ¢ = 90° between the normal and field.

In part i), the paper is oriented to “capture” the most field lines whereas in ii) the
area is oriented so that it “captures” no field lines.

22.2: a) ®=E-A=EAcos where A= An
fg =—j(lef)®; =—(4x10° N/C)(0.1m)’ cos (90 —36.9°) =24 N-m’/C
fig, = +k (top)®;, =—(4x10° N/C)(0.1m)* cos90° =0
fg =+ (right)®; =+(4x10° N/C)(0.1m)* cos(90° —36.9°) = +24 N-m’/C
iy =—k (bottom)®; = (4x10° N/C)(0.1m)’ cos90° =0
Aig, =+ (front)®; =+(4x10° N/C)(0.1m)’ cos36.9° =32 N-m’/C
Ay =—i (back)®; =—(4x10° N/C)(0.1m)’ c0s36.9°=-32 N-m*/C

b) The total flux through the cube must be zero; any flux entering the cube must also
leave it.

22.3: a) Given thatE = —Bi + C} —Dk,d=E- A, edge length L, and

g =—j= ®, =E- dig =—CL’.
Ay =+k = ®, = E - Ai;, =-DL’.
Ag =+j= @, =E - Ay =+CL".

g =—k = ®, =E- Ay, =+DL’.

b) Total flux=Y ®, =0

22.4: ®=E-A=(75.0 N/C) (0.240 m*) cos 70° = 6.16 Nm?/C.



225: a) P=E-A=3> Qmrl)=2= (600407 Cim) 0400m) _ 5 71 % 10° Nm?/C.

2megr &

b) We would get the same flux as in (a) if the cylinder’s radius was made larger—the
field lines must still pass through the surface.
c¢) Ifthe length was increased to / = 0.800 m, the flux would increase by a factor of

two: ® =5.42x10° Nm?/C.

22.6: a) @ =gq,/¢, =(4.00x10” C)/z, = 452 Nm’/C.
b) @5 =g,/ =(-7.80x107 C)/e, =881 Nm*/C.
c) @5 =(q,+q,)/e, =((4.00-7.80)x107 C)/e, =429 Nm*/C.
d) Oy =(q,+4q,)/e, = (4.00+2.40)x10” C)/e, =723 Nm*/C.
e) @5 =(q, +q,+5)/g =((4.00-7.80+2.40)x10~ C)/e, =—158 Nm’/C.

f) All that matters for Gauss’s law is the total amount of charge enclosed by the
surface, not its distribution within the surface.

22.7: a) ®=gq/e, =(-3.60x10° C)/e, = —4.07x10° Nm?/C.

b) ®=gq/e, = q =g, =¢,(780 Nm*/C) =6.90x10~° C.

c) No. All that matters is the total charge enclosed by the cube, not the details of
where the charge is located.

22.8: a) No charge enclosed so @ =0

-9

b) @ = & = 6'007?2102 C . __ 678 Nmz/c.
g, 8.85x10™" C?/Nm

o= +q, (4.00—6.00)x10~° C

£ 8.85x10™% C?*/Nm’

c) =226 Nm’/C.

22.9: a) Since E is uniform, the flux through a closed surface must be zero. That is:
D= §E -dA = == éjpdV =0= [ pdV = 0. But because we can choose any volume we

want, p must be zero if the integral equals zero.

b) Ifthere is no charge in a region of space, that does NOT mean that the electric field
is uniform. Consider a closed volume close to, but not including, a point charge. The field
diverges there, but there is no charge in that region.



22.10: a) If p >0 and uniform, then ¢ inside any closed surface is greater than zero.
=>0>0=> §E -dA >0 and so the electric field cannot be uniform, i.e., since an

arbitrary surface of our choice encloses a non-zero amount of charge, £ must depend on
position.
b) However, inside a small bubble of zero density within the material with density p,

the field CAN be uniform. All that is important is that there be zero flux through the
surface of the bubble (since it encloses no charge). (See Exercise 22.61.)

22.11: @, =q/e, =(9.60x10° C)/e, =1.08 x 10° Nm?/C. But the box is
symmetrical, so for one side, the flux is: @, =1.80x10° Nm?/C.

b) No change. Charge enclosed is the same.

22.12: Since the cube is empty, there is no net charge enclosed in it. The net flux,
according to Gauss’s law, must be zero.

22.13: cI)E = Qencl/go
The flux through the sphere depends only on the charge within the sphere.
Qencl = 8()CDE = 80(360 N . mz/C) = 319 nC

1 ¢ _ 1 (250x107°C)
dre, r* 4me, (0.550 m)’

b) E =0 inside of a conductor or else free charges would move under the influence of
forces, violating our electrostatic assumptions (i.e., that charges aren’t moving).

22.14: a) E(r=0.450m+0.1m)= =7.44 N/C.

22.15: a)|E|=4Lm:>r:\/L =1.62 m.

2
me, 1 4re,

g _ | 1 (0.180x107°C)
E| \4me, 614N/C

b) As long as we are outside the sphere, the charge enclosed is constant and the sphere
acts like a point charge.

22.16: a)P = EA=q/e, = q =¢,EA=¢, (1.40x 10° N/C) (0.0610 m*) = 7.56 x 10~ C.
b) Double the surface area: ¢ = ¢,(1.40 x 10° N/C) (0.122 m®)=1.51x10" C.



22.17: E =34 = q=4ne,Er’ = 4n5,(1150 N/C) (0.160 m)* =3.27 x 107 C. So the

4me

. 3.27x107° C
number of electrons is: 1, = =" =2.04 10"

22.18: Draw a cylindrical Gaussian surface with the line of charge as its axis. The
cylinder has radius 0.400 m and is 0.0200 m long. The electric field is then 840 N/C at
every point on the cylindrical surface and directed perpendicular to the surface. Thus

§ E-d5 = (E)(Ayipe) = (E)2rL)

= (840 N/C) (27) (0.400 m) (0.0200 m) = 42.2 N-m*/C
The field is parallel to the end caps of the cylinder, so for them iﬁ’ -ds =0. From

Gauss’s law:
2 2
g=e,0, =(8.854x10" ¢ ) (422 N-m,
N-m
=3.74x10"° C
22.19:
b 0200m A =-2.40,C/m
) p a ' 040 m
0200m |

A= +4.804Chn

po L2

2mey v



22.20: a) For points outside a uniform spherical charge distribution, all the charge can
be considered to be concentrated at the center of the sphere. The field outside the sphere
is thus inversely proportional to the square of the distance from the center. In this case:

0.200 cm
0.600 cm

b) For points outside a long cylindrically symmetrical charge distribution, the field is
identical to that of a long line of charge:

E= A ,
2me,r

E = (480 N/C)( j =53N/C

that is, inversely proportional to the distance from the axis of the cylinder. In this case
0.200 cm
0.600 cm

c) The field of an infinite sheet of charge is £ =0/2¢,; i.e., it is independent of the
distance from the sheet. Thus in this case E =480 N/C.

E = (480 N/C)( j =160 N/C

22.21: Outside each sphere the electric field is the same as if all the charge of the sphere
were at its center, and the point where we are to calculate E is outside both spheres.
E, and E, are both toward the sphere with negative charge.

-6

E =kl Dl 18007 C s 5910000 N/C
" (0.250 m)
-6

E =kl 3 38007 C 5 pr110° N/C
" (0.250 m)

E=E, +E, =8.06x10° N/C, toward the negatively charged sphere.



22.22: For points outside the sphere, the field is identical to that of a point charge of the
same total magnitude located at the center of the sphere. The total charge is given by
charge density x volume:

g =(7.50 nC/m3)(§7r)(0.150 m)’ =1.60x107° C
a) The field just outside the sphere is

o4 _ (9x10° N-m*/C?) (1.06 x 107" C)
dre,r’ (0.150 m)>

= 42.4N/C

b) At a distance of 0.300 m from the center (double the sphere’s radius) the field will
be 1/4 as strong: 10.6 N/C

c) Inside the sphere, only the charge inside the radius in question affects the field. In
this case, since the radius is half the sphere’s radius, 1/8 of the total charge contributes to
the field:
_(9%x10° N-m*/C?) (1/8) (1.06 x 107" C)

E 2
(0.075 m)

=212 N/C

22.23: The point is inside the sphere, so E = kQr/ R’ (Example 22.9)

ER’ (950 N/C) (0.220 m)°
kr k(0.100 m)

=10.2nC

0=

22.24: a) Positive charge is attracted to the inner surface of the conductor by the charge
in the cavity. Its magnitude is the same as the cavity charge: g, .. =+ 6.00 nC, since

E =0 inside a conductor.
b) On the outer surface the charge is a combination of the net charge on the conductor
and the charge “left behind” when the +6.00 nC moved to the inner surface:

qtot = qinner + qouter = qouter = qtot - qinner = 500 nC - 600 nc == 1 00 nc‘

22.25: S, and S, enclose no charge, so the flux is zero, and electric field outside the

plates is zero. For between the plates, S, shows that: EA=q/e, =0 Ale, = E =d/¢,.



22.26: a) At a distance of 0.1 mm from the center, the sheet appears “infinite,” so:
-9

fE-di-F24=9p-_9 - T30x10C

& 2¢04  2¢,(0.800 m)

b) At a distance of 100 m from the center, the sheet looks like a point, so:

1 g _ 1 (750x107 C)
4re, r* 4me, (100 m)’

c) There would be no difference if the sheet was a conductor. The charge would
automatically spread out evenly over both faces, giving it half the charge density on any

as the insulator (0 :). E, == = 7;- near one face. Unlike a conductor, the insulator is the

&9

=662 N/C.

E~ =6.75x10 N/C.

charge density in some sense. Thus one shouldn’t think of the charge as “spreading over
each face” for an insulator. Far away, they both look like points with the same charge.

22.27: a) U=Q=_Q :Q:JZERzi.
A 27nRL L
b) ﬁ-dZ:E(zan):Q:"z”RL:E:ﬂ,
& & re,

¢) But from (a), A=027R, so E =52, same as an infinite line of charge.

2meyr 2



22.28: All the o's are absolute values.
(a) at A: E, =2"TZO+&+"_4_L

2¢gg 2¢, 2¢g,

E,=—(,+0,+0,-0))
&

=2L(5 wC/m? +2 1 C/m? +4 4 C/m* — 6 uC/m?)
€9

=2.82x10° N/C to the left.

(b)
o o o o 1
E,=—+2+—+2+-—2=—(0,+0,+0,—0
g 2e, 2¢, 2¢, 2g, 280( |+ O3 ¥ 0, =)
=2L(6yc/m2+2,,¢c/m2+4yc/m2—5yc/m2)
&
=3.95x10° N/C to the left.
(c)
Eo=2,0 % o L s

_280 2e,  2¢, 2g, 2g,

=%(5 wC/m? +2 uC/m* —4 uC/m*> -6 uC/m?)

0

=1.69x10° N/C to the left

22.29: a) Gauss’s law says +Q on inner surface, so £ = 0 inside metal.

b) The outside surface of the sphere is grounded, so no excess charge.

c) Consider a Gaussian sphere with the —Q charge at its center and radius less than
the inner radius of the metal. This sphere encloses net charge —Q so there is an electric
field flux through it; there is electric field in the cavity.

d) In an electrostatic situation £ =0 inside a conductor. A Gaussian sphere with
the — QO charge at its center and radius greater than the outer radius of the metal encloses
zero net charge (the —Q charge and the + Q on the inner surface of the metal) so there is
no flux through it and E = 0 outside the metal.

e) No, E =0 there. Yes, the charge has been shielded by the grounded
conductor. There is nothing like positive and negative mass (the gravity force is always
attractive), so this cannot be done for gravity.



22.30: Given E =(=5.00 (N/C)-m)xi + (3.00 (N/C) - m)zk, edge length
L=0300m, L=0.300 m,and i, =—j= @, =E fi;A=0.
Ay =+k=®,=E-ag A=(3.00 (N/C) - m)(0.300 m)’z = (0.27 (N/C)m)z =
(0.27 (N/C)m)(0.300 m) = 0.081 (N/C) m>.
g =+j=®,=E g A=0.
hg, =—k = ®,=E f; A=—(0.27 (N/C) - m)z =0 (z =0).
Ag, =+ = @, = E - fig A= (-5.00 (N/C) -m)(0.300 m)”x = —(0.45(N/C) - m)x
=—(0.45 (N/C) -m)(0.300 m) = — (0.135 (N/C) - m?).
g, =—i = @ =E g A=+(0.45(N/C)-m)x =0 (x =0).
b) Total flux:
O =D, + D, =(0.081-0.135) (N/C)-m* = —0.054 Nm>/C
qg=¢,0=-478x10"C

22.31: a)

4

b) Imagine a charge g at the center of a cube of edge length 2L. Then: ® =g/ ¢,.

Here the square is one 24th of the surface area of the imaginary cube, so it intercepts 1/24
of the flux. That is, ® = g/24¢, .

22.32: a) ® = E4=(125N/C)(6.0 m*) =750 N-m?/C.

b) Since the field is parallel to the surface, ® = 0.

¢) Choose the Gaussian surface to equal the volume’s surface. Then: 750 —
EA=q/e, = E =—5(2.40x10°° C/g + 750) =577 N/C, in the positive x -direction.

6.0m?

Since g <0 we must have some net flux flowing in so £4 — —‘ EA | on second face.

d) g <0 but we have E pointing away from face /. This is due to an external field
that does not affect the flux but affects the value of £.



22.33: To find the charge enclosed, we need the flux through the parallelepiped:
®, = AE, c0s60° = (0.0500 m)(0.0600 m)(2.50 x 10* N/C) cos 60° =37.5 N - mz/C
®, = AE, cos120° = (0.0500 m)(0.0600 m)(7.00 x 10* N/C) cos 60° =—105 N - m?/C
So the total flux is ® = ®, + ®, = (37.5-105) N-m?/C = -67.5N-m?/C,and
q=®e, = (—67.5N-m?/C)g, = -5.97x107"° C.
b) There must be a net charge (negative) in the parallelepiped since there is a net

flux flowing into the surface. Also, there must be an external field or all lines would point
toward the slab.

22.34:

=3
o

I
e e M

[

@

[

The o particle feels no force where the net electric field is zero. The fields can
cancel only in regions A and B.

Eline = Esheet
Ao
2me,r 2e,
r=mo=—0HM 6 16m=16em
7(100 £C/m?)

The fields cancel 16 cm from the line in regions A and B.



22.35:

| _\QZ =0.900nC
Y'i\’

0.120m £,
v

o1 =—8.00nC/m?

The electric field El of the sheet of charge is toward the sheet, so the electric

field E2 of the sphere must be away from the sheet. This is true above the center of the
sphere. Let » be the distance above the center of the sphere for the point where the

electric field is zero.
E=Eso =1 &
2¢, 4me, R
3 -9 2 3
. 270, R _ 27(8.00x 10 C/rnig)(O.12O m) 0097 m
0, 0.900x10~° C




22.36: a) For r <a, E =0,since no charge is enclosed.

For a <r <b, E=-—<%_ since there is +¢g inside a radius r.

4mey 20

For b <r <c, E =0, since now the —¢ cancels the inner +g¢.

For r>c¢, E = -, since again the total charge enclosed is +g.
0 r
b)

a b ¢ r
c¢) Charge on inner shell surface is —q.
d) Charge on outer shell surface is +q.

e)

22.37: a) r <R, E =0, since no charge is enclosed.

b) R<r<2R,E=4 2  since charge enclosed is Q.7 > 2R, E =2 22 since

4mey 20 4mey 42 2

charge enclosed is 2Q.




22.38: a) r<a, E= 4;3% r%, since the charge enclosed is Q.

a<r<b,E =0, since the —Q on the inner surface of the shell cancels the +Q at the
center of the sphere.

r>b, E=— 4;0 i—ZQ , since the total enclosed charge is —2Q.

b) The surface charge density on inner surface: o = — 4512 .
¢) The surface charge density on the outer surface: o = —%.
d)

—Q spread on
inner surface

—2Q spread on outer
surface




22.39: a)(i) r<a, E=0, since 0=0
(i) a<r<b, E=0, since O =0.
(i) b<r<c, E=3-2, since O =+2g.

(iv) c<r<d,E=0, since O =0.
(v) r>d, E=--% since O =+6gq.

ey 420

E

b)(i) small shell inner: Q=0
(i1) small shell outer: Q=+2q
(i11) large shell inner: Q =-2q
(iv) large shell outer: Q=+ 6g

22.40: a)(i) r <a, E =0, since the charge enclosed is zero.
(i) a<r<b,E =0, since the charge enclosed is zero.

2 . .
(iii) b<r<c,E=,-=1, since charge enclosed is +2g.

(iv) c¢<r<d, E =0, since the net charge enclosed is zero.
(v) r>d, E =0, since the net charge enclosed is zero.

E

b)(i) small shell inner: Q=0
(i1) small shell outer: Q =+2q
(ii1) large shell inner: Q=-2q
(iv) large shell outer: Q=0



22.41: a)(i) r <a, E =0, since charge enclosed is zero.
(i) a<r<b, E =0, since charge enclosed is zero.

(i) b<r<ec, E=4 24 since charge enclosed is + 24.

b
4mey 42

(iv) ¢<r<d, E =0, since charge enclosed is zero.

(v) r>d, E=—--2L since charge enclosed is — 2g.

b
4ney 42

E

b)(i) small shell inner: Q=0
(i1) small shell outer: Q=+2¢
(i11) large shell inner: Q =-2q
(iv) large shell outer: Q=-2¢

22.42: a) We need:

4z p 3 3 — 287 pR’ 30
-0=—""2(Q2RY-R)=>(Q0=—""=p=— .
Q 3 ((2R) )=0 3 P =R

b) <R, E=0andr>2R, E =0, since the net charges are zero.

R<r<2R @®=E@dm) =2+ 3P —R3):»E=L2+L2(r3 ~R%).
& 3, re,r” 3e,r

0 or

Substituting p from (a) E=-2

Treg 2 287‘[&‘0R3 '

c) We see a discontinuity in going from the conducting sphere to the insulator
due to the thin surface charge of the conducting sphere—but we see a smooth transition
from the uniform insulator to the outside.

E

TOHZRue i) —

[ A



22.43: a) The sphere acts as a point charge on an external charge, so:
F =qE = radially inward.

b
4ney 2

(b) If'the point charge was inside the sphere (where there is no electric field) it
would feel zero force.

+ 3 1
2244: 2) p=—19 =- 3‘14 : =_‘1( . 3)
V,-V, smab’—ima” 4n\b —a
P A :—3q( 1 j
MV, -V, drd—izd A \dP-C

E

g/{ 4?.&‘0:‘,72) -

gl(dmege®)

I L ]
a b ¢ d r

b) () r<a$E-dd=0=E =0.

(i) a<r<b§E-dd= ! [ PunedV = Edr? = 3in(r3 ~dp,..
0

&

&
gl (C-q)_ q (F-a)
3g, M dre, (b° —a’)

i) b<r<c$E-dd=L = Fam? =4 =~ p-_1
(i) § ;
& N 4me,r

(iv) c<r<d§E-d2=i+ijpde:>
g &

33
E47Z'7’2 :i+4_n-(r3_c3)pouter so £ = : 2 q(’; 3c ) 3
e, 3e, : dre,r”  dmer(d’ —c”)

W) r>d§E-dA=1-L=0=E=0
& &



22.45: a) a<r<b, E= I Z—}L, radially outward, as in 22.48 (b).
drs, r
b) r>c, E=3L-2*, radially outward, since again the charge enclosed is the

same as in part (a).

c)

~

a b ¢ ¥

d) The inner and outer surfaces of the outer cylinder must have the same amount

of charge onthem: M =—&, /= A, .. =-AandA . =\
22.46: 2) (i) r<a EQui=4-%p__*_
& & 2me,r

(i) a <r < b, there is no net charge enclosed, so the electric field is zero.

(iii) b EQuily=d 2% g%
g & e, r
E

a b r

b) (1) Inner charge per unit length is —a. (i1) Outer charge per length is + 2.



22.47: a) (i) r<a, EQml)== j—O’ =S FE= radially outward.

(i) a <r < b,there is not net charge enclosed, so the electric field is zero.

_a
s
2meyr

(iii) » > b, there is no net charge enclosed, so the electric field is zero.

E )

a b r

b) (i) Inner charge per unit length is —a.
(i1) Outer charge per length is ZERO.

22.48: a) r<R, EQnrl)= ﬁ =l e radially outward.

5
& 2¢,

b) r>R,and?»=p7rR2,E(27rrl)=i=%32[:>E=”Rz— A — 28

2egr  2meyr r
c) r = R.the electric field for BOTH regions is E = %, so they are consistent.
d)

E

22.49: a) The conductor has the surface charge density on BOTH sides, so it has twice
the enclosed charge and twice the electric field.

b) We have a conductor with surface charge density o on both sides. Thus the
electric field outside the plate is ® = E(24) = (204)/e, = E = 0/¢, . To find the field

inside the conductor use a Gaussian surface that has one face inside the conductor, and
one outside.
Then:

®=E, A+E A= (cd)/e, but E,, =0/e, = E, A=0=E, =0.

out



22.50: a) Ifthe nucleus is a uniform positively charged sphere, it is only at its very
center where forces on a charge would balance or cancel

3
b) @=¢E-dd=L= pan’ =2 | E=—T
& & \ R 4me R
L e
dre, R®
So from the simple harmonic motion equation:

s 1 ér 1 & 1 1 &
F=-mwr=- — o= === T
4me, R 4me, mR 2r \ 4me, mR

2
o) If f=457x10" Hz= - |1 ¢

27\ 4me, mR’

=>F=qF=—-

-19 2
SRy L QOO 55000 m,
4re, 4n”(9.11x107 kg)(4.57x10™" Hz)

];ctual/rThompson ~ 1

d) If » > R then the electron would still oscillate but not undergo simple
harmonic motion, because for » > R, I oc 1/ r*, and is not linear.

22.51: The electrons are separated by a distance 2d, and the amount of the positive
nucleus’s charge that is within radius d is all that exerts a force on the electron. So:
ke’

é’: 2:Fnucleus=2kezi3:d3:R3/8:>d=R/2.
(2d) R



Q o/ ay . 4Q 4 —2x/a,
22.52:a) Q(r)zQ—jpdeQ—?‘lSjjje 2 dr sin 0dO d¢:Q_a_3I0 x2e % dx

=0@0)=0- 4fo3 (e” —a’r’ = 2ar —2)=Qe " [2(r/ay)’ +2(r/ay) +1].
a, o

Note if » —> w0, Q(r) > 0.

b) The electric field is radially outward, and has magnitude:

er—2r/a0 )

=E= = (2(r/ay)” +2(r/ay) +1).

1.00

0.80
%3]
z 0.60
2 040 \

0.20

\\
0.00
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Scaled r

22.53: a) At r=2R, F =q E =L %0 = 1 (20610707 _ g\

4mey 4R? Amey  4(7.1x107° m)?

So: a=F/m=94N/9.11x107" kg =1.0 x 10** m/s’.

b) Atr=R,a=4a, =41x10" m/s’.

c) At r=R/2,0=1%(82e) (+ because the charge enclosed goes like 7*) so with the
radius decreasing by 2, the acceleration from the change in radius goes up by (2)* =4,
but the charge decreased by 8, so a =%a,, =2.1x10” m/s’,

d) At r=0,0=0,s0 F=0.



22.54: a) The electric field of the slab must be zero by symmetry. There is no preferred
direction in the y -z plane, so the electric field can only point in the x -direction. But at
the origin in the x -direction, neither the positive nor negative directions should be
singled out as special, and so the field must be zero.

b) Use a Gaussian surface that has one face of area A on in the y -z plane at

x =0, and the other face at a general value x. Then:

v<d:®=EA= Lot _PAX _ p_ X
) ) )

b

with direction given by ‘—:‘tA
Note that £ is zero at x = 0.
Now outside the slab, the enclosed charge is constant with x :
x> d q) EA Qencl pAd E pd
) 2 30

again with direction given by ;i

22.55: a) Again, E is zero at x = 0, by symmetry arguments.

3

X 3
b) x<d: = Fd= Lot —ij'z de'=PoM g PoY i X direction.

g, &d’ 9 3g,d’ 3e,d>’ | x|
A4 ¢ A
x>d: ®=FEA= Qo —Lz x" dx’zM:EZM in =i direction.
g &d 3¢, 3e, | x|

22.56: a) We could place two charges + Q on either side of the charge + ¢ :

Q— o

Q Q

=0

b) In order for the charge to be stable, the electric field in a neighborhood around it
must always point back to the equilibrium position.
c) If ¢ is moved to infinity and we require there to be an electric field always

pointing in to the region where g had been, we could draw a small Gaussian surface

there. We would find that we need a negative flux into the surface. That is, there has to be
a negative charge in that region. However, there is none, and so we cannot get such a
stable equilibrium.

d) For a negative charge to be in stable equilibrium, we need the electric field to
always point away from the charge position. The argument in (c) carries through again,
this time inferring that a positive charge must be in the space where the negative charge
was if stable equilibrium is to be attained.



R R R
22.57: a) The total charge: g = 4rx I p,(1=r/R)yr’dr = 47r[J' ridr — I r* | Rdr]
0 0

0

47R’p, 4nR’ 30
= qg=4np, [R*/3-R’/4]= 0 _ =Q.
q =4mp, [R*/3— R*/4] 3 eyt

b) >R, all the charge Q is enclosed, and: ® = E(4mr*)=Q/e, = E = ;-

4me, r2 H
the same as a point charge.
¢) r<R,then Q(r)=q(r|R?).
Also, O(r) = 4z [ p,(1 - r/ Ryr*dr =dmp, (5 — 4= )
12k0(1+ 17 kQ(4r 3r 37
=" (3 R’ 4R4] PR R Q
d)
14
12
) 1.0
% 06
0.4 //
0.2 / T
0.0 0.5 1.0 1.5 2.0
R
e) ZE—O( <R)= 4kQ 6kQ =0=>r :gR So E 2kQ(4— )—4kQ
r

R max 3 * max 3 R 2



22.58: a)

R

®© R
_ 25 ry 5, 2 4 (R
0= 47{! p(r)yridr = 47rp0£ (1__3Rj rdr =4mp, M r dr——3R IO r dr}

b) r2R§ E-dAd=921 0= F=0

€

C) r< R,§ E . d/] :ﬂ Or p(l"’)l"lzdl", = E47l7"2 =%|:JZ rlzdr’_%jor 7’"3dl"’}

&g &y

3 4
NI :&,{1_1}
& r |3 3R| 3 R

d)
(12
o E g Po 2P g, _R
or 3e,  3¢,R
gl R R _1|_pR
2) 3¢, 2| 2] 12
2 .
22.59: a) &, =§g-d =—Gm§”m9 df W49 __4uGm,

7

b) For any closed surface, mass OUTSIDE the surface contributes zero to the flux
passing through the surface. Thus the formula above holds for any situation where m 1is
the mass enclosed by the Gaussian surface.

That is: @, :§ g-dA=—4zGM

encl.



22.60: a) @, = gdmr® = —4aGM = g = — GM

-—, which is the same as for a point mass.
B

b) Inside a hollow shell, the M

c¢) Inside a uniform spherical mass:

=0,s0 g =0.

encl

3
o, = gdnr’ =—4xGM =—47rG(M%j:> g :—%,

which is linear in r.

22.61: a) For a sphere NOT at the coordinate origin:

13 '
FoF B ®—dp? E= Lo _ LA g P
& & 3 3e,

in the r' - direction.

L p_Pr-b)
3¢,

b) The electric field inside a hole in a charged insulating sphere is:

: _p g _PF_pF-b)_pb
Ehole = sphere E(a) = ﬂ - M = p_
380 38() 380

Note that E is uniform.

22.62: Using the technique of 22.61, we first find the field of a cylinder off-axis, then the
electric field in a hole in a cylinder is the difference between two electric fields—that of a
solid cylinder on-axis, and one off-axis.

Fef-bm @zl E=Zad o Ly p LU PEZD)
& & 2¢, 2¢,

- E F _pPr_ p(r——b) = p_b Note that E is uniform.

E - -
cylinder above
2¢, 2¢, 2¢,

hole



22.63: a) x =0: no field contribution from the sphere centered at the origin, and the
other sphere produces a point-like field:

E(x=0)=— L @ ;1 92,
4re, (2R)’ 4, 4R’

b) x=R/2: the sphere at the origin provides the field of a point charge of charge

g =Q / 8 since only one-eighth of the charge’s volume is included. So:

E(x=R/2)= L(@/8) Q0 ;| 2(1/2—4/9)5: I 2 ;
dme, \(R/ 2 (BR/ 2y 4me, R’ 4re, 18R’

c) x = R: the two electric fields cancel, so E=0.
d) x=3R: now both spheres contribute fields pointing to the right:

E=3p-—|2 +2|;-_L 109
4rne, \(BR)" R 4ne, OR

22.64: (See Problem 22.63 with Q — — O for terms associated with right sphere)

Y E(x:0)=+47[80 4%21:
b) E(xzﬁjz 1 [(Q/S)Jr 0 }cz 1 [Q +4Q}:= 1 179
2) 4me, | (R/2)Y (BR/2) dme, | 2R 9R’ 47z, 18R
2 E-n-p| L &]i-5 i
drwe, | R~ R 2me, R

d) E(x=3R)=— |- 2 21 1 [Q —2}2_—1&2
4me, | BR)® R’ dme, | 9R* R’ 4re, OR’



22.65: a) The charge enclosed:

3 3
0=0, +Q,, where O, = a4”(§/2) _ onR

Sy (R°-R’/8) (R'-R'/16)) _lloxR’
3 4R 24

_15azR’ - 80

R 2 3
,and O, = 47(2a) jm (** =/ R)dr

= = .
0= T 5w
3
b) r<R/2:® = Bdmr = 3T _or_ 8o
3¢, 3¢, 15me,R
3 p3 4 p4
R/2SrSR:<D:E47zr2:g+L 8ar (r R/g)_(r R/16)
g & 3 4R
anR’ ; A kO X )
=———(64(r/R)" —48(r/R)" —1) = 64(r/R)’ —48(r/R)" —1).
T (4 (AT R) = 48R = 1) = £ (640 ) = 480/ R) =)
r>R:E= 0 >, since all charge is enclosed.
4me v
c) %:w:i:0.267.
Q Q 15
d) r<R/2:F=—eE=— 1s:QR3 r, so the restoring force depends upon displacement to

the first power, and we have simple harmonic motion.

3
¢) Fe—kr k= 86Q3,a)= k _ SeQ3 ,T=2—7[:27r 157[80Rme.
157e, R m, 15me,R°m, ® 8eQ

f) Ifthe amplitude of oscillation is greater than R/2, the force is no longer linear in
r, and is thus no longer simple harmonic.




22.66: a) Charge enclosed:
®12 3ar’ 6ma 1 R* 3

+ O, where 4 dr =——"—="-naR’.
0=0+0, 0= I R 416 32
7 31 47
and Q, = 4na 1—(r/R)r* dr =4naR’ | — — — | =——naR’.
O I (1= C/RY) (24 160) 120
Therefore, Q = (i + ﬂj raR® = 232 raR® = g = 480Q3 )
32 120 480 233zR
13 4 2 2
b) r<R/2:® = Edm 47t r 3ar dr,=37r0cr N 6ar _ 1800r -
g 2R 2¢,R l6g,R  233me R
RI2<r<R:®=Edm’ =< +4ﬂ A= R dr
€y €y
_g+@ r_3_R_3_ r +R3 3 4maR’
g, & \ 3 24 5R* 160) 128 ¢,
 4rak’ 1(1}3 _1(1]5 7
& 3\R 5\R 480
_ 4800 1(1]11(1]1&
233ze,7° (3\R) S5\R) 1920 )
r>R:E= >, since all charge is enclosed.
dne,r
¢) The fraction of Q between R/2<r<R:
G _ A7 280 507
0 120 233
d) E(r=R/2)=2 4MQR2 , using either of the electric field expressions above,

evaluated at » = R/2.

e) The force an electron would feel never is proportional to —7 which is necessary for
simple harmonic oscillations. It is oscillatory since the force is always attractive, but it
has the wrong power of 7 to be simple harmonic.



Capitulo 23



no7 0.354m  0.150m
=W =-AU =-03571J.

23.1: AU = kqlqz[l —lj = k(2.404C)( - 4.30ﬂC)( ! ! j =0.357J

23.2: W=-19x10"T=-AU =U, -U, = U, =1.9x10"T+54x107"] =
7.3x107°]

23.3: a)

k(2.80x107°C)(7.50x10°°C)

0.800 m
E—F, L K09, _ [206087-0491))

| S | 0.0015 kg

b) At the closest point, the velocity is zero:
— 0.608 ] = k4,9, = k(2.80x107°C)(7.80x107°C)

r 0.608J

E =K, +U, = %(0.0015 kg)(22.0 m/s)* + =0.608 J

=12.5m/s.

=0.323 m.

_ -6 -6
134: U 04001 MO% _ _ —k(230x10°C)(7.20x10°C)
r ~0.400J

=0.373 m.

kQq k(4.60x107°C) (1.20x10°C)
r 0.250 m
b) () K, =K, +U,-U,

23.5: a) U=

=0.1991J.

1 B 1
025m 0.5m

=K, =0.0994J=lmv§. =v, = 2(0'0—99?4]) =26.6m/s.
: 27 7 2.80x107kg

(i) K, =0.189J, v, =36.7mys.
(iii) K, =0.198J, v, =37.6m/s.

=0J+k(4.60x107°C) (1.20><106C)( j:0.0994J

kq® 2kq®

23.6: U= +
0.500m 0.500 m

= 6kq® = 6k(1.2x107°C)*> =0.078 I.



23.7: a)

(4.00 nC)(-3.00nC) _ (4.00 nC)(2.00 nC)

U=kl 992 , 99 , 99 |_ (0.200 m) (0.100m)
4t I3 Iy i (—3.00 nC)(2.00 nC)
(0.100 m)
=-3.60x107" J.
b)IfU=0,0= k(qlqz + 499, 929 } So solving for x we find:
sy X By — X
0=-60+ § - 0 26 =60x* —26x+1.6=0=x=0.074m, 0.360 m. Therefore
x 02-x

x =0.074 m since it is the only value between the two charges.

23.8: From Example 23.1, the initial energy £, can be calculated:
E =K +U, = %(9.11>< 107'kg)(3.00x 10° m/s)?

. k(—=1.60x107°C)(3.20x107"°C)
10"m
= E =-5.09x107" J.
When velocity equals zero, all energy is electric potential energy, so:
k2e’

r

~5.09x10™"] =— =7=9.06x10""m.

23.9: Since the work done is zero, the sum of the work to bring in the two equal charges
g must equal the work done in bringing in charge Q.

kq*  2kqQ q
Wiy =Weo = _727 = Q:_E~



23.10: The work is the potential energy of the combination.
v=U, +U,+U,

_ ke(2e) N ke( —e) N k(—e)(2e)
52 x10m  5x10™m  5x10™m

ke [i—l—zj
5x10""m (2
_(9.0x10° Nm’/C?) (1.6x10™ C)* (1_3]
5%10"m V2
=—731x10"7

Since U is negative, we want do +7.31x 107" J to separate the particles

23.11: K, +U, =K, +U,; K,=U,=0s0 K, =U,
2

2
U =-° (1+Z+EJZ L3¢ ith r=8.00x107" m

dme,\r r r) A4me, r

U =144x10" 1=9.00 eV

2
23.12: Get closest distance y. Energy conservation: %mv2 + %mv2 = ke
4
2 9 2 2 -19 2
- ke _ (9x10° Nm /2(7: )(1.6 ><610 O 138x10™ m
mv (1.67 x 107" kg)(10° m/s)
Maximum force:
2
F=t
4

_(9%10° Nm?/C?) (1.6 x 107" C)°
(1.38x10"°m)*
=0.012N

23.13: K,+U,=K,+U,
U=qgV,s0K,+qV,=K; +qV,;
K, =K, +q(V, - VB):0.00250J+(—5.00><10’6 C) (200V —800 V) =0.00550 J

vy =+2K,/m =7.42m/s

It is faster at B; a negative charge gains speed when it moves to higher potential.



23.14: Taking the origin at the center of the square, the symmetry means that the
potential is the same at the two corners not occupied by the + 5.00 uC charges (The

work done in moving to either corner from infinity is the same). But this also means that
no net work is done is moving from one corner to the other.

23.15: E points from high potential to low potential, so V, >V, and V. <V .

The force on a positive test charge is east, so no work is done on it by the electric
force when it moves due south (the force and displacement are perpendicular); V,, =V,.

23.16: a) W =—AU =qEd =AK =1.50x107° J.
b) The initial point was at a higher potential than the latter since any positive charge,
when free to move, will move from greater to lesser potential.

AV =AU/q=(1.50x10"° J)/(4.20 nC) =357 V.
1.50x107°J
(4.20 nC)(0.06 m)

¢) gEd =150x10°J=E = =5.95x10° N/C.

23.17: a) Work done is zero since the motion is along an equipotential, perpendicular to
the electric field.

b) W =qEd =(28.0 nC)(4.00 x10* Xj(0.670 m)=7.5x10"*]J
m

) W =qEd =(28.0 nC)(4.00 x10* XJ( —2.60 cos 45°) = —2.06x 107 ]
m



23.18: Initial energy equals final energy:

E=E =- kegq,  keq, _ keq,  keq, N %mevfz

Ut Y hy Ny
(3.00x107° C) . (2.00x107° C)
0.25m 0.25m

(3.00x107 C)  (2.00x10”" cj 1,

E =k(-1.60x107" C)( j:—2.88x10‘” J

2

E, =k(-1.60x10™" C) +—m,v;
‘ 0.10 m 0.40 m ‘

=-5.04x10"7 T+ lmevf2
2

=v, :\/m (5.04x1077 T -2.88x107" J)
A1 x g

=6.89 x10° m/s.

kq _ kg _ k(2.50x107" C)

23.19:a) V=-—"=7r =2.5x107 m.
r V 90.0 V
—11
by vty ke k3010 C) 55 15y,
r V 300V

23.20: a) V=K o1V _O20mMAEBON) 53 0 ¢
r k k
-9
by o k133x10°0)
(0.750 m)
-9 _ -9
2321: a) AtA:V, =k doy Do | oy 240x10 7€ Z6.50x10 7 C1__ 50y,
noor 0.05m 0.05m
-9 -9
b) AtB:ngkﬁ+q—2 _k 2.40x10 C+ 6.50x10” C 705V
P 0.08 m 0.06 m

c) W=gAV =(2.50x10"° C)(-33V)=-8.25x10"J.
The negative sign indicates that the work is done on the charge. So the work done by the
field is 8.25x107° J.



23.22:

a)

by y=21 9

c¢) Looking at the diagram in (a): V' (x) =2 2

d)

23.23:

4ne, a

Lg_, 1 ¢

2 2
e, ¥ Arey Ja® + x

Y e —————

0.80 - N
Potential P

0.40

S

0.00 L
—4.00 -3.00 —2.00 -1.00 0.00 1.00 2.00 3.00 4.00

Position

e) When x>>a,V = p ! 2_q, just like a point charge of charge + 2g.
me, X

a)

+q
b) V. = kg  K(=9) _,
r
¢) The potential along the x-axis is always zero, so a graph would be flat.
d) Ifthe two charges are interchanged, then the results of (b) and (c) still hold.
The potential is zero



2324: a) |y|<a:V =tk _ ke
(a+y) (a-y) y -a

y>a:V= kg kg _ —2kqa
(a+y) y-a y' -d
ye—qv=——H____ ki _ 2kqa

(a+y) (~y+a) y' -da*

Note: This can also be writtenas V' =k [ -9 . 4 j

|y—al |y+al

b)

v

c) y>>a:V = kg kg _ —2kqa

a+y) (y-a)

d) If the charges are interchanged, then the potential is of the opposite sign.




23.25: a)

) ~
W/ 0 )
+q 5
b) x>a:V=ﬂ_ 2kq :—kq(x+a)‘
x x—a x(x—a)
O<X<a:V:k_q_ 2kq _ kq(3X—a).
x a-x  x(x—a)
)C<O:V:_kqJr 2kq _ kq(x+a).
x x-a x(x—a)

Note: This can be also be written as V' = k(5 — ‘xzfa‘)

c) The potential is zero at x = —a and a/3.

d)

e) For x>>a:V ~—;
X

—kgx —kq

X

L B B e S S m—

, which is the same as the potential of a point charge

—q. (Note: The two charges must be added with the correct sign.)



yloor

g v K2y, [L#J

b) ¥ =0, when y> =2

c)

4.00 / \
3.00

Scaled 2.00
potential
1.00 / \

0.00 S I N .

-1.00
-2.00 -1.50 -1.00 —0.50 0.00 0.50 1.00 1.50 2.00

y(lay

d) y>a:V~= kq(l - gj =— ﬂ, which is the potential of a point charge — ¢ .
y oy y

23.27: W=-AU=-Vg=(295V) (1.60x10™"° C)=4.72x107" J.But also:
2(4.72x1077 J)

=1.01x10" m/s.

WZAKZ%WIVZDVZ\/

9.11x10 kg
2328 a) E=L=a=" =3BV _o415m
d E 120N/C
b) V:%:qz%dz(“g V);O'415m)=2.30x1010 C.

c) The electric field is directed away from ¢ since it is a positive charge.

23.29: a) Point b has a higher potential since it is “upstream” from where the positive
charge moves.
V,.-V,=Eb-a)=—|E|(b-a)=V, -V, =|E|(b-a)>0
V2400

b) E ~——=800N/C.
d 03m

c) W==AU=-gAV =—(-020x10° C)(-240 V)=—4.8x107 J.



23.30:(a) V =V, +V,, >0, so Vis zero nowhere except for infinitely far from the

charges.
0 20
o<——d—>e
X The fields can cancel only between the charges
kQ _ k(20)
EQ =E2Q —)x—zz(d_—x)z—)(d—X)z =2x2
x =—“=. The other root, x = —=, does not lie between the charges.
(b)

-0 20
B ° A °

y x J can be zero in 2 places, A and B.

at 4: K9 K2O) a3

X d—x
atB:k(_Q)+k(2Q):O—>y:d
y d+y

E, = E,, to the left of — Q.

k20 d
2 d+x 21

(c)

x Note that £ and V are not zero at the same places.

23.31: a) K, +qV, =K, +qV,
qV,-V,)=K,-K;; q=-1.602x10" C
K, =imy! =4.09%x10"J;,  K,=1my; =2915x10""17
K, - K,
q
The electron gains kinetic energy when it moves to higher potential.

b) Now K, =2915x107" J, K,=0
K, - K,
q
The electron loses kinetic energy when it moves to lower potential

V, -V, = =—156V

V, -V, = =182V



_ kg _k(3.50x107 C)

23.32: a) V =65.6 V.
r 048 m
-9
b) V:k(3.50><10 C):131.3V
0.240 m

c¢) Since the sphere is metal, its interior is an equipotential, and so the potential
inside is 131.3 V.

23.33: a) The electron will exhibit simple harmonic motion for x << a, but will
otherwise oscillate between +30.0 cm.
b) From Example 23.11,

.

1 1
=>AV =kQ| — - ———
VX +ad’ [a VX’ +a2]

= AV =k(24.0x10”° C){ ! !

0.150m /(0.300 m)* + (0.150 m)?

=796 V

But W:—qAV:%mvz :>v:\/2(1.60><10’19c) (796 V) :1.67X107 m/S.

9.11x107" kg

23.34: Energy is conserved:
(1.67 x107" kg) (1500 m/s)’

%mv2 =qAV = AV =

L =0.0117 V.
2(1.60x10°° C)

But:

AV = A In(r, /r) = r, = r exp (27[8°AV] =>r=r, exp( - 27[80AV)

2z, A A
= = (0.180 myexp| — 2 QOUTV) 1 1581m,
5.00x107° C/m
23.35: a) E= r = 3601 =8000 N/C.
d 0.0450 m

b) F=Eq=(8000N/C) (2.40x10”° C)=1.92x10" N.
¢) W=Fd=(1.92x107 N) (0.0450m)=8.64x107" J.
d) AU=AVg=(-360V) (2.40x107° C)=-8.64x107" J.



23.36: a) V = Ed =(480 N/C) (3.8x107 m)=18.2 V.
b) The higher potential is at the positive sheet.
¢) E=Z =6 =¢,(480 N/C) =4.25x10"° C/m>.

0

4750 V

S =1.58x107 m.
3.00x10° V/m

2337) E=L=a=-Y—
d E

b) E=Z =0=¢,3.00x10° V/m)=2.66x10"° C/m’.

&

o 47.0x10° C/m’
€ €
b) ¥ =Ed =(5311N/C) (0.0220m)=117 V.

c) The electric field stays the same if the separation of the plates doubles, while the
potential between the plates doubles.

23.38: a) E= =5311N/C.

23.39: a) The electric field outside the shell is the same as for a point charge at the center
of the shell, so the potential outside the shell is the same as for a point charge:

V=—2"+torr>R.
4rme,r

The electric field is zero inside the shell, so no work is done on a test charge as
it moves inside the shell and all points inside the shell are at the same potential as the

surface of the shell: V = q for r <R.
e R
b)V:k_gSoq:RkV:(O.ISm)(k—12OOV):_20nC

¢) No, the amount of charge on the sphere is very small.



23.40: For points outside this spherical charge distribution the field is the same as if all
the charge were concentrated at the center.

Therefore
E=—9_
4me,r
and
2
q =4ne,Er’ = (3800 N/C) (0.200 m) =1.69x10°C

9x10° N.m? / C?

Since the field is directed inward, the charge must be negative. The potential of a point
charge, taking o as zero, is

o 4 _ (9%x10° N.m* /C*) (-1.69x 107°C) 760V
4me v 0.200 m

at the surface of the sphere. Since the charge all resides on the surface of a conductor, the

field inside the sphere due to this symmetrical distribution is zero. No work is therefore

done in moving a test charge from just inside the surface to the center, and the potential at

the center must also be —760 V.

23.41: a) E=-VV.

E. :—a—V:—i(Axy—sz +Cy)=—Ay +2Bx.
ox ox

E, :—8—V:—£(Axy—Bx2 +Cy)=—-A4Ax-C.
o oy

E. :—a—V:—i(Axy—sz +Cy)=0.
oz oz

b) —Ay+ZBx=O:y=27Bx,—Ax—C=O:x=—% S0 y=273.(ij=

-2BC
A2

pmom[-C 725C
A A



23.42:2) E=—VV
P a{ k0 J_ kOx  kOx

* ox  oOx \/x2+y2+zz Sy P

kQy and E = ka.

3
r r

Similarly, E, =

b) So from (a), E = g (x—l + 27 ﬁ] = Qf', which agrees with Equation (21.7).
r

2
r r r r

23.43: a) There is no dependence of the potential on x or y, and so it has no
components in those directions. However, there is z dependence:

E=-VV =E. =—88—V=—C:E=—CI€, for 0<z<d.
z

and E =0, for z > d, since the potential is constant there.

(b) Infinite parallel plates of opposite charge could create this electric field, where the
surface charge is o = £ Cg,,.



23.44: a)
(1) r<ra:V=ﬂ—@=kq[i—l}

a rh ra rh

. 1 1
(1) r,<r <n: V:@—ﬂ:kq(___}
r I’h v rb
(1) r>r, :V =0, since outside a sphere the potential is the same as for point

charge. Therefore we have the identical potential to two oppositely charged point charges
at the same location. These potentials cancel.

b) ¥, = [i—iJ andV, =0 =V, =— q(l—lj

dmey \ v, 1, dne, "\ 1, 1,
c) ra<r<rb:E=—8—V=—Li 1.1 -+ L ga_ Vs i
or dne, Or \r r,

d) From Equation (24.23): £ =0, since V is zero outside the spheres.

e) Ifthe outer charge is different, then outside the outer sphere the potential is no
g 1. 0_ 1 (4-0

dne, v 4dme, ¥ - 4ne, 1

! Q Therefore relative potentials within the

4re, 1,
shells are not affected. Thus (b) and (c) do not change. However, now that the potential
does vary outside the spheres, there is an electric field there:

__a_V__ﬁ(k_‘lJrﬂj_k_‘l _Q
o orlr ro) q'

longer zero butis V' =

. All potentials inside the outer

shell are just shifted by an amount V' = —

7



2345:2) V= kq(i - lj =500V

a

500V

=>qg=
o0
0.012m  0.096m

=7.62x107"° C.

b)

¢) The equipotentials are closest when the electric field is largest.

2a Jas +x* —a
= E, :—I(—Q[ailn(\/a2 +x° +a)—§ln(\/a2 +x° —a)}
X

2a | Ox

2 2
23.46: a) £, =~ ‘Z—V - _62 [k_Q In (@ﬂ
X X

B _/’c_Q[x(a2 + xz)’l/2 B x(a® +x*)7"? } B kQ
2a | Na’+x* +a Na’+x* -a xva® +x’
S E - (2a)) _ 1 A .
47[80)ca\/1+)c2/a2 2me, )c\/1+x2/a2

b) The potential was evaluated at y and z equal to zero, and thus shows no
dependence on them. However, the electric field depends upon the derivative of the
potential and the potential could still have a functional dependence on the variables y and
z, and hence Ey and E_may be non-zero.



23.47:

V=120V V=360V

V=0V V=240V V=480V

a) Equipotentials and electric field lines of two large parallel plates are shown above.
b) The electric field lines and the equipotential lines are mutually perpendicular.



23.48:
ml mz n’l3
. . .
QD493

8.0 8.0
cm cm

(@ ZF=ma=F,+F;
kq,q, kq,q; _

2 2
4P N3

9 =49, =495 =4

ma =kq’ (iz + izj

m,a

o, I3

9 2 /2 <1075 C)? 1 !
(0.02kg)a = (9 x 10" Nm*/C*) (2.0x10C) Lo,ogm)2 +(0.16m)2}

a=352m/s’

(b) Maximum speed occurs at “infinity”. The center charge does not move since the
forces on it balance. Energy conservation gives U, = K.

kq,4, +kq1q3 +kq2% :lm1v12+lm3v32.
Up UE Iy 2 2

v =vy,m =my,andq, =¢q, =q; =¢q

\/qu(l R ]
V= || — 4+ —
m \N, hsy Ty

:\/(9x109Nm2/C2)(2><106C)2( 1 1 ! j:7.5m/s

+
0.020 kg 008m 0.16m 0.08m

23.49: a) W, =AK-W, =435x10"J-6.50x107 J=-2.15x107 J.
=5
b) W, =—qAV = AV = We _ 2'15”0,9 ! 2829V, Sothe initial point is
g 7.60x107°C

—2829 V with respect to the final point.

LBV s saxi0r Y
d 0.08m m

c) £



23.50: a) =" o v=. [~
r r mr
2
b)Kz—mvzzliz—lU.
2 r 2
2 -19 2
OE=K+U=1y=-1K _ TRLOOXI0_CF _ 7, 151 5- 136ev.
2 2 r 2 529x107 m

23.51:a) V =Cx*? = C=(240 V) (0.0130 m)™** =7.85x10* V/m"” .
b E=-2 - 2o o2 (785510 V/im* ) = ~1.05x10° —\:/3 X3 |V/m,
ox 3 3 m

toward cathode.

¢) F =—eE =((1.05%x10) (0.00650)"° V/m) (1.60 x 10" C) =3.14x 107" N,
toward anode.



23.52: From Problem 22.51, the electric field of a sphere with radius R and ¢ distributed

uniformly over its volume is £ = qar - for r<Rand E = l > forr 2 R
4me R 4me,r

V.-V, = J.b Edr. Take b at infinity and ¥, = 0. Let point a be a distance » < R from

the center of the sphere.

2
Vr:IR qr3dr+ 4 ~dr = 1 3_r_2
r 4me,R R Ame,r 8me, R R

Set g =+ 2e to get V, for the sphere. The work done by the attractive force of the sphere

when one electron is removed from » =d to c is

2 2
W= eV, =— ¢ (3—d—J

h
sphere r 87[80 R R2

The total work done by the attractive force of the sphere when both electrons are

removed is twice this, 2W_ ... The work done by the repulsive force of the two electrons

2
s W, =—9
47, (2d)

energy required to remove the two electrons is the negative of this,

¢ [ R _d°
2re,R 4d R’

We can check this result in the special case of d = R, when the electrons initially sit on
the surface of the sphere. The potential due to the sphere is the same as for a point charge
+ 2e at the center of the sphere.

The total work done by the electrical forces is 2W,

sphere

+W,,. The

W—>h =U

q a

2 2 2 2
U, —0U, =2| =2 |4 ¢ ____¢ (—2+lj= Te
4ne,R ) 4ne,(2R) 4mey R 4) 8me,R

_Ub

The work done by the electric forces when the electrons are removed is — 7¢*/8z¢,R and

the energy required to remove them is 7e’ / 8me, R . Setting d =R in our general expression
yields this same result.



23.53: a)
3 3 1 2 3 1 2 2 1
U=kg® | -2+ 2 ——|thg® | -+ —— |+ kg? | -2+ —=——
1 ( d  2d \/3dJ 1 ( d 2d \/3dJ 1 ( d 2d 3
1 2 1 2 1 1 1
+kq’ | ——+——— |+ k 2(——+—j+k 2(——+ j+k (
q(dﬁdﬁdjqdﬁdqdﬁ !

12 12 4]_ 12kg*(, 1

FRN N R G IJ 1464 /m5yd

:>U=kq2 (—

b) The fact that the electric potential energy is less than zero means that it is
energetically favourable for the crystal ions to be together.

111 2kq (- 1)11
2354 a) U=2ko? |- L4 L L2
2) 1 ( d 24 3d j Z

2
b) U=_2kq

In(2)

c) The potential energy is the same for the negative ions—the equations are identical
if we examine (a).
_ 2k(1.60x10" Y0’ In(2)

n =—1.13x107" J.
2.82x107" m

d) If d=2.82x10""m, thenU =

e) The real energy (—0.80 x 10™"* J) is about 70% of that calculated above.

2 -19 2
23.55: a) U, = —2h¢ _ Z2RI00x10 TCF g 5110y,
r 0.535x10 " m

b) If all the kinetic energy goes into potential energy:

2ke?
\/af2 +x?
4f*e’

= x’ = G —d*>=824x10""m’ (d =5.35x107"" m)
t

(Note that we must be careful to keep all digits along the way.) = x=2.87x10™"" m

U=U,+K=-861x10"J+1.02x10"J= =-7.59%10"" ]




23.56: F, = mg tan® = (1.50 x 10~ kg) (9.80 m/sz) tan (30°) = 0.0085 N . (Balance

forces in x and y directions.) But also:
Vq Fd (0.0085N) (0.0500 m)

F=Eqg=—>=V=— —~ =478 V.
d q 890x10° C
. A A
23.57:a) (i) V= (In(b/a) — In(b/b)) = In(b/a).
2me, 2me,
(i) V= A (In(b/r) — In(b/b)) = i In(b/r) .
2me, 2me,
() V =0.
b) V, =V (a)-V(b)= s In(b/a).
2me,
¢) Between the cylinders:
Vab
V = 71_80 ln(b/r) = m h’l(b/l’)
oV Vi O _ Vs 1
o In/a) or (In(b/r)) = In(b/a) r-

d) The potential difference between the two cylinders is identical to that in part
(b) even if the outer cylinder has no charge.

23.58: Using the results of Problem 23.57, we can calculate the potential difference:
e 1y B
In(b/a) r

=V, =(2.00x10* N/C) (In(0.018 m/145x10™° m)) 0.012m =1157 V.



23.59: a) F=Eq=(1.10x10°V/m) (1.60x10™" C) =1.76 x 107'* N, downward.
b) a=F/m,=(1.76x107"° N)/(9.11x10™" kg) =1.93 x 10" m/s” ,downward.

0.0601’1’1 —9 1 2 1 14 2 -9
) t=——=923x10"s, y—y,=—at"=—(1.93x10"m/s") (9.23x10 "¢
) 6.50 x 10° m/s YNy 2( /)
=8.22x107 m.

d) Angle 6 = arctan(v, /v,) = arctan(at/v,) = arctan(1.78/6.50) = 15.3°.

e) The distance below center of the screen is:

D=d +vt=822x10"°m+(1.78x10° m/s)%=0.0411m.
v 6.50x10° m/s

23.60:

b

(a) Use AVab toget}\.:AV:IbE.dlzjb }\‘ dl": }\‘ ln%
“ « 2me, 2re,
3 = 2me AV
Inb/a
E= A _ 27[80AV/lnb/a _ AV
2me,r 2me,r rInb/a
at outer surface of the wire, » = a =_°~12; mm
E= 0¥ =2.65x10° V/m

(0.0002127m) ln li(;.o()l(2)7c$):|
b) at the inner surface of the cylinder, » =1.00 cm, which gives
Y g
E=1.68x10* V/m



23.61: a) From Problem 23.57,
v, 1 50,000V I
“In(b/a) r In(0.140/9.00x107) 0.070 m
— E=9.72x10* V/m.
10 (3.00 107" kg)(9.80 m/s*)
9.72x10* V/m

b) F=Eq=10mg=¢q= =3.02x107" C.

23.62: Recall from Example 23.12 for a line of charge of length a :

,_ kQ [«/ 2/4+x2+a/2]

\/a2/4+x —al2

a) For a square with two sets of oppositely charged sides, the potentials cancel and
V=0.
b) Ifall sides have the same charge we have:

24 2 2
V:4kQ1n[”a/ tx +af }, but here x =a/2, so:
a

\/612/4-1-)62 —a/2

4kQ V@ +4" +a|_4kQ {(\/_H)}
=>V=
\/a +4x* —a (\/_—1)

a

23.63: a)

dV =

kQ |727trdr} 2kQ  rdr
\/x +r2L R’ R \/x2+r2

:T 2kQI\/rdr2:2kQ(1/2)

R2
— \/x2 +R —x]
2¢,

itk 2kQ[\/7 ]

b) E - oV 2kQ X R A 1
o R feir 2 | 1+ R/x?



23.64: a) From Example 23.12:

V(x)zl;—Ql [ a’+x° +a} le { 1+d*/x +a/x]

a a’ +x —-a \/1+a2/x —

If a << x, 41 +d*/x’ +a/x~1+2[—j +2~1+2, and In(1+ a) = a+;a Heee
x x

X

:>V(x)~@ E+i(£j2+ — _24_1(2)24_... —@{E}_Q
~2ax2x x 2\x T 2al x| x

That is, the finite rod acts like a point charge when you are a long way from it.
b) From Example 23.12:

V(x)=@1n Jai +x’ +a _kQ J1+x%/a® +1
Jai +x* —a 261 w/1+x2/a2—1 .

a
Ifx<<a,\/1+xz/a2 i1z1i1+%(£j ,andlr1(1+oz)zoc+%oz2 + .-
a
=V (x) ~§—Q{ H(Mﬂ kQ{ n( +1ﬂ zk—Q In(2a/x) =
x’ a

a (x2/2a2) 2a

0 A
1 In(2a/x) = 5

€,a e,

In (2a/ x).

Thus A = 22 ,and R = 2a, which is the only natural length in the problem.
a



23.65: a) Recall:rSR:E——:V— J- :—2LJ' rdr:_i(ﬁ_Rz)
R € R

So with A =zR’p, V = — k\(r’ /RZ— 1).

2 r
For roR:E=PR Ly _ jE di—- LR [dr__ % In[£]=-2k0 In [£]
2¢g,r 250 2 2me,
b)
1.0
0.8
0.6
Scaled £

0.4 \\
0.2

0.5 1.0 1.5 2.0 2.5 3.0

iR

o
2.5 30 7R

k(5:00x10° C)  k(=2.00x10” C)
0.0300 m 0.01m
k(5.00x107° C) . k(—2.00x107° C)
J(0.0300% +0.0500°) m  4/0.0100> + 0.0500°
b) W= —gAV =—(+6.00x10"° C)(718 V) =—4.31x107° J.

Note that the work done by the field is negative, since the charge is moved AGAINST the
electric field.

23.66: a) 7(0.03,0)=

=-300V.

=419 V.

7(0.03, 0.05) =

23.67: From Example 21.10, we have: E_ = 1 > sz 3
4re, (x”+a”)
=V == - ,[ 2 - T dx' = d u'? Zziwz = 1 Q = Equation
dre, 2 (X" +a”) 4re, Are, Ix* + a?

(23.16).



23.68:
gy Ldg_ 1 ddl_ 1 Qdl_ 1 0df_ 1 J-Qd6

4me, r 4me, a 471'80 ma a 477:80 ma 477:80 ma

0.3
23.69: a) S,and S, :V,;=- J.( —5xi + 3212) : } dy=0; S, and S, are at equal potentials.
0

0.3 0.3
b) S, and S, :V,, == [(—5xi +3zk) - kdz =3 Izdz=_73zz 03—
0 0

—0.135 V.S, is higher.

0.3 0.3
¢) Ss and S : Vi == [(=5xi +32k) - idx =5 [x dx = %xz 3= % (0.3)> =0.225 V.
0 0

S, 1s higher.

23.70: From Example 22.9, we have:
_kQ

r

r>R:E:g:>V:
r

R r
r<R;E:kQ3r _J-E.d;r_‘[ﬁ,d}jr k_Q_k_QJ' "
R
= kQ kgl " kQ kQ le;
R R 2 | R ZR 2R

2
14 :@{3 _r_z}
2R R

N

!
R 3R T R 3R Y

b)




23.71: a) Problem 23.70 shows that

V. = 0 (3-r*/R*)forr<RandV, = © forr>R
8me, R 4,

V, = 30 Ve = Q ,andV, =V, = 0
8me R 4me R 8me R

b) If O >0,V is higher at the center. If O <0,V is higher at the surface.

23.72: (a) Points a, b, and c are all at the same potential because E =0 inside the
spherical shell of charge on the outer surface. So AV, =AV, =AV,  =0.

kg (9x10° Nm*/C’) (150 x10°° C)

AI/COO -
R 0.60 m
=225x10° V.

(b) They are all at the same potential
(c) Only AV, would change; it would be —2.25x10° V.

23.73: a) The electrical potential energy for a spherical shell with uniform surface
charge density and a point charge g outside the shell is the same as if the shell is

replaced by a point charge at its center. Since F. =—dU/dr, this means the force the

shell exerts on the point charge is the same as if the shell were replaced by a point charge
at its center. But by Newton’s 3" law, the force ¢ exerts on the shell is the same as if the

shell were a point charge. But ¢ can be replaced by a spherical shell with uniform

surface charge and the force is the same, so the force between the shells is the same as if
they were both replaced by point charges at their centers. And since the force is the same
as for point charges, the electrical potential energy for the pair of spheres is the same as
for a pair of point charges.

b) The potential for solid insulating spheres with uniform charge density is the same
outside of the sphere as for a spherical shell, so the same result holds.

c¢) The result doesn’t hold for conducting spheres or shells because when two charged
conductors are brought close together, the forces between them causes the charges to
redistribute and the charges are no longer distributed uniformly over the surfaces.



23.74: Maximum speed occurs at “infinity”” Energy conservation gives
kq,q, _ 1 2 2
= MsgVso T MsVis
r 2

Momentum conservation: m,vy, = m,s,V,s, and vy, =3v

Solve for vy, and v,,,, where » = 0.50 m
o =12.7m/s, v,  =4.24m/s
Maximum acceleration occurs just after spheres are released. X F = ma gives

kq,q
19> _
2 = My50a;59

(9 x10° Nm?/C?) (10~ C) 3x 107 C)
(0.50 m)>

=(0.15kg )a,s,

a5 =72.0 m/s’
ag, =3a,5, = 216 m/s’

23.75: Using the electric field from Problem 22.37, the potential difference between the
conducting sphere and insulating shell is:

V——J'E dr_—j KO 4y —kQ[R 21R}:>V:12€—%.

r C

23.76: a) Atr:c:V:—jﬁdr_kq

0

¢) Atr=a:V =- jE dF - jE df—fE-df:ﬁ—kqjﬂ— qE—l+l}
c b

d) At r=0:V =kq [l—l+ 1}
c b a
same potential as its surface.

since it is inside a metal sphere, and thus at the

23.77: Using the electric field from Problem 22.54, the potential difference between the
two faces of the uniformly charged slab is:

d d 2
[Eear-- ﬂdxzi(x_)\dﬁvzo.
? 7,28, 2¢,( 2



23.78: a) v = K& _ K(=1.20x 13 e
r 6.50x107" m
b) The volume doubles, so the radius increases by the cube root of two:
R =32R=8.19x10" m and the new charge is O, =20 =—2.40x10"2 C. So the
new potential is:

y o kO _ k(=240 102 C)

=-16.6 V.

new = 4 —_264V
R..  819x10"m
23.79: a)
v, = kg _kQ _dz :Vzk—Qj dz :k—an(szk—an[Hﬁ}
zZ+ X a z+Xx a OZ+‘X a X a X
b)

a r a |z*+y? a '!‘wlzz+y2 a

a 2 2
g KOd KO =, kO d k_Ql[_M}

y
c)
x>>a:V, zk—ngk—Q,Since In(1+a)=a.
a x x
[ 2 PR
y>>a:V, zk—Qﬁzk—Q, Since In | Y4 7Y ¢ zln(y—wjzln(l+£jz£.
ay y y y y) v
23.80: Set the alpha particle’s kinetic energy equal to its potential energy:
-19 2
K:U:>11.0MeV:k(ze)(gze):r: k(16461)(1.60><10 _(139)
r (11.0x10° eV)(1.60 x 107" J/eV)
=2.15x107" m.
23.81: a) V= kQB = kQA = kQB :>QA :3QB :&:_
RB RA RA /3 QA
b) EB=—8—V =ka=k(QA/32)=3kQ2A=3EA:&=3.
or -, Ry (RA/3) R, A



23.82: a) From Problem 22.57 we have the electric field:

2

I’ZR:E=k—Q:>V:—J‘k—gdr’—k_Q

b

r °r r
which is the potential of a point charge.
kQ r3 r4 R ’ r ’
b) r<R:E=—-|4—-3— :Vz—jEdr—jEdr
r R R : .

2 2 3 3 3 2
:»V:%Q{l—z%u%+%—%}’@[r 2L }

23.83: a) E=le VszI,sonRE

2 b
1 1

b) After electrostatic equilibrium is reached, with charge Q] now on the original
sphere we have:

' ' , R
0, =0} +QuandV, =1, = 8182 g0, 2
1 2 2

R R , (R//R R
0 = Q2_1 +0, =0, = QlR1 — 29 and O/ = ( 1/ 2RI)Q1 — 19

R, (1+28) (R, +R) 1+2) (R +R)

c) The new potential is the same at each sphere’s surface:
) K,
= =

R R, (1+%):(R2+R1)2V2

d) The new electric field is not the same at each sphere’s surface:

o kOl kO kO,
"R’ RR,(1+7) R(R,+R)
g k0 _ kO, k0,

R’ R(I+y) R(R, +R)



23.84: a) We have V(x, y,z) = A(x* —=3y° +z%).So:
Ez—a—Vf—a—V}—a—Vléz—zAxf+6Ay}—2Azlé
ox oy 0z

b) A charge is moved in along the z -axis. So the work done is given by:

0 0
W:qjE-léquj(—zAz)dz=+(Aq)202:>A= W

zq zy qZO
B 6.00x 107 J 6
(1.5x107° C)(0.250 m)

2

40 V/m?.

¢) E(0,0,0.250) = —2(640 V/m?) (0.250 m)k = - 320 V/mk.
d) In every plane parallel to the x - z plane, y is constant, so:

V(xayaZ)Zsz+A22—C:>x2+22:V+CERZa

which is the equation for a circle since R is constant as long as we have constant
potential on those planes.

1280V +3(640 V/m*)(2.00 m)’

e) ¥=1280V,and y =2m: x* + 2’ - =14m’.
640 V/m
Thus the radius of the circle is 3.74 m.
2 -19 2
23.85:a) E =E, =2 {lmpvz} LG FL60x107"C)
‘ 2 2rp 2(1.2x107° m)(1.67 x 107" kg)

= v=7.58%x10° m/s.

b) For a helium-helium collision, the charges and masses change from (a):

-19 2
v= K2(1.60x10 ©)) =7.26x10° m/s.
(3.5x107"° m)(2.99)(1.67 x 107" kg)

c)
2 2 =27 6 2
kKL _m g My (L67x10 k)7 S8x10° m)s)” 5 5 g0 ¢
2 2 T 3(138x 102 J/K)
2 =27 6 2
7, =M (2967 x10 T ke)(7:26 <107 m)s)” _ ¢ 4 qgo
3k 3138 <102 J/K)

d) These calculations were based on the particles’ average speed. The distribution
of speeds ensures that there are always a certain percentage with a speed greater than the
average speed, and these particles can undergo the necessary reactions in the sun’s core.



23.86: a) The two daughter nuclei have half the volume of the original uranium nucleus,
so their radii are smaller by a factor of the cube root of 2:

L _T4x 107" m
2

k(46e)’  k(46)*(1.60x107" C)?
2 1.17x10™ m

Each daughter has half of the potential energy turn into its kinetic energy when far from
each other, so:

K=U/2=(415x10"1)/2=2.07x107" J.
¢) If we have 10.0 kg of uranium, then the number of nuclei is:

n= 10.0 kgm =2.55x10% nuclei.
236u (1.66 107 kg/u)

And each releases energy U:E =nU =(2.55x107)(4.15x10™"' ) =1.06 x 10" J =
253 kilotons of TNT.

d) We could call an atomic bomb an “electric” bomb since the electric potential
energy provides the kinetic energy of the particles.

=59x10" m.

b) U= =4.14x10™""J

23.87: Angular momentum and energy must be conserved, so:

mvb=mv,r, and E, = E, = E, :%mvz2 +% and E, =11 MeV =1.76 x 107" J.
£

Substituting in for v, we find:

2
E=E2 +¥%  (£).2 ~ (kgq,)r, - Eb* = 0,and note g, = 2 and ¢, = 82e.
12

2 r
Db=10"m=r,=1.01x10"m
(i)b=10" . =1.01x107"
(ii)b=10"m=r,=1.11x10" m.

(i) b=10"" m =7, =2.54x10"* m.



poa’ r r oV
23.88:a) r<a:V=""—|1-35+2—|and E=——

2 2 2
ST Bt W L

18¢, a a 3¢y la a

rZa:V=0andE=—a—V=0.
or
2
b) rSa:E,4nr2=%=M{£—r—2}47rr2

g 3¢ |a a

E, . A(r* + 2rdr) =

dr

O var  poa {r+dr (r* + 2r dr)
- - 2
a

& 3¢,

} An(r® + 2r dr)

9w =9 _ p(riur’ dr _ pyadmrdr [ 22 21 }
& & 3¢, a@ a a a
:>p(r)=&[3 —ﬂ} =P, [l—ﬂ}.
3 a 3a

c) r=a:p(r)=0, so the total charge enclosed will be given by:

3 3a

0
Therefore, by Gauss’s Law, the electric field must equal zero for any position » > a.

a 3 474
O =4 [ p(ryridr = 4p, [ {rz —%} dr = 4mp, [l'” - r—} =0.
0

3 3
23.89: a) Fg:mg:%pgquah/d=qE:F;:>q:4?ﬂ:p;gd
ab

3
dmr pg =6mnrv, =F =r= 2,

b) F,=mg=

3
g dmped | o e d v
3V |\ 2pg Ve \ 2pg

10° m \/(1.81 x 10 Ns/m*)*(10° m/39.3 5)’

=4.80x107" C=3e.

c =18
) 4=18m ey 2(824 kg/m’*)(9.80 m/s?)

L [9as1x 10~° Ns/m?)(10~° m/39.3 5)
B 2(824 kg/m*)(9.80 m/s?)

=5.07x10" m




23.90: For an infinitesimal slice of a finite cylinder, we have the potential:

k dQ kQ dz
dV = =—=
\/(x—z)2+R2 L \/(x—z)2+R2
kQ dz L/2 x
=== = —— whereu=x—z.
Z[/Q\/(X_Z) +R2 L/.[ xﬂu +R

:V:k_an[\/(L/2—x) +R” +(L/2-x)

on the cylinder's axis.
J@/2+x)? +R* —L)2—x

b) For L<<R:

KO . | NL/2=xP+ R +L2—x| kO | —xL+R> +L/2—x
V~—=1In ~—In
Lo J(2+x)+R -L)2-x| L |x*+xL+R> —L/2-x

:Vzk—an \/I_XL/(R2+XZ)+(L/2—X)/\/RZ*+XZ}

L | 14 xL/(R? +5%) + (-L)2 - %)/ R + ¥°

:VszQm_ 1= xL/2(R? + %) + (L2 - x)/ {[R? + x* }

1+ 5L/ 2R + x%) + (~L/2 - x)/{[R? + °

ko [1+0/2fR*+x | ko I I
=V~ n = (= |-In|l-———
Lo |1-1/2fR+x*| L 2R + X 2R + X

kQ 2L kQ , which is the same as for a ring.
L o[y + R \/x2 +R?

oV _2kQ (\/(L —2x)% + 4R — /(L +2x)* + 4R> )
o J(L-2x) +4R> - J(L+2x) +4R>

=V=

c) E=-




23.91: a)

p oMy my, (6x107° kg)(400m/s) + (3x 107" kg)(1300 m/s)

" my+m, 6.0x107° kg +3.0x107° kg

2, kq,q,
r

=700 m/s

b) E, = %ml"f + %mzvz - %(ml + m2)vcm2'

After expanding the center of mass velocity and collecting like terms:

=E, = 1 mm, [V12 + V22 —2vn, ]+ kg, = lﬂ(‘ﬁ - V2)2 + kg, .
2 m +m, r 2 r
-6 _ -6
0) E., =1(2.0x107 kg)(900 mfsy? + KELA0"OCS0x107C) _ o5
2 0.0090 m
d) Since the energy is less than zero, the system is “bound.”
e) The maximum separation is when the velocity is zero:
-6 _ -6
_197~— kq,q, e k(2.0x10™ C)(=5.0x10" C) 0.047 m.

r -1.917J
f) Now using v, =400 m/s and v, =1800 m/s,we find : E,, =+ 9.6 J. so the particles
do escape, and the final relative velocityis:

v —v|= \/ 2L _ \/ 206D _ 980 m/s.

L 20x10° kg



Capitulo 24



24.1: O0=CV =(25.0V)(7.28 uF)=1.82x10~* C.

2
24.2: a) Czaoé:gow
d 0.00328 m

_ 0 _435x107°C
C 329x10"°F
V 132x10°V

¢) E=—=—""""""-402x10° V/m.
d  0.00328 m

=3.29 pF.

b) V =13.2kV.

-6
243: a) V:Q:w:6o4v_
C 245x10" F

-10 3

by 4= Cd _ (245X 10" F)0328x 10° m)
€y &

eV

d 0328x10° m

=0.0091m".

c) E =1.84x10° V/m.

d) E=ZL = 6=¢,E=¢,(1.84x10° V/m)=1.63x10"° C/m".

€y

24.4: AV=FEd="d
€

~_ (5.60x 107" C/m*)(0.00180 m)

8.85x107"% C?/Nm?
=1.14 mV

24.5: a) Q=CV =120 uC
b) C=¢,4/d
d — d/2 means C — C/2 and Q — Q/2 =60 uC
c) r—2rmeans 4 > 44,C - 4C, and Q — 40 =480 uC



24.6: (a) 12.0 V since the plates remain charged.

b) () V=¢
Q does not change since the plates are disconnected from the battery.
e-A
C=
d

Ifd is doubled, C > 1 C,s0V =2V =240V

(i) A=mr?,soif r — 2r,then 4 — 44, and C — 4C which means that
V —> %V =300V

24.7: Estimate r =1.0 cm

g,4

2 2
C= 7 SO d — 8077’7/' — 8071-(0010 m)

C 1.00x10™ F

The separation between the pennies is nearly a factor of 10 smaller than the diameter of a
penny, so it is a reasonable approximation to treat them as infinite sheets.

=2.8mm

24.8: (a) AV =Ed
100V = (10* N/C)d
d=10"m=1.00cm

oo bd _ e, R’

d d

p_ |4 _ [4cd

e, 4re,
Nm®

R= \/4(5.00 x10"*F)(10m)(9 x 10’ 5 )

R=424x10"m=4.24cm
(b) O =CV = (5pF)(100 V) = 500 pC

24.9: a) S o 27
L In(r/r,)

C- (0.180 m)2re,
In(5.00/0.50)
b) ¥=0/C=(10.0x10"7C)/(435x10™"* F)=230V

=435x10"" F



Mo _ 2 g7 58
C/L  315x10” F/m r

a

24.10: 2) % 2mé,

= = In(r,/r,) =

In(r, /r,)

b) % = V% =(2.60V)(31.5%10™ F/m)=8.19x10™"" C/m.

2re, 2me,
In(r,/r,) In(3.5mm/1.5 mm)
b) The charge on each conductor is equal but opposite. Since the inner conductor
is at a higher potential it is positively charged, and the magnitude is:
O=CV = 27, LV 27, (2.8 m)(0.35 V) _643x10C.
In(r,/r,) In(3.5 mm/1.5mm)

=6.56x10" F/m.

24.11: a) C/L=

24.12: a) For two concentric spherical shells, the capacitance is:

C=L o |k —kCr, = 1y =5 1y = e
k rh_ra kc_ra

-12
_ k(116x10™" F)(0.150m) _ oo

=n= =T
k(116 x10™* F) —0.150 m
b) ¥=220V,andQ=CV =(116x10"" F)(220 V) =2.55x10" C.

r,—r,) k\ 0.148m-0.125m
b) The electric field at a distance of 12.6 cm:
kQ _kCV _ k(8.94x 107" F)(120 V)

24.13: a) C:l( L J:l((o'mgm)(o'mm)j=8.94x10“F.

E=— 5 > =6082 N/C.
r r (0.126 m)
c¢) The electric field at a distance of 14.7 cm:
—-11
P =Q: kCV _ k(8.94x10" F)(120 V) _ 4468 N/C.

oo (0.147 m)?
d) For a spherical capacitor, the electric field is not constant between the
surfaces.



1 1 1 1 1
24.14: a) — = +—= —~—t s
C, G+C C (B3.0+50)x107F) (6.0x107F)

= C,, =3.42x10"F.

The magnitude of the charge for capacitors in series is equal, while the charge is
distributed for capacitors in parallel. Therefore,

0,=0+0,=VC, =(24.0V)(3.42x10° F) =8.21x107 C.
0 _9 C 5
_i=_j:>Q2 ZF?QI =§Q,
0,=20 =821x10"C=Q,=3.08x10" C,and O, =5.13x10" C.
b) V,=V,=0,/C,=(3.08x107 C)/(3.00x10° F)=10.3 V. And V; =
240V -103V=13.7V.
¢) The potential difference betweenaandd: V,, =V, =V, =103 V.

Since C, and C, are at the same potential,

1 1 1 1 1
24.15:0) ——=—— + = +
Co (E+H)+C C, (200 uF +4.0 uF) (4.0 uF)
= C,, =2.40 4F.

Then, O, + 0, =0, = Oy = C..V = (240 x107° F)(28.0 V) =6.72x 107 C and
 Oua _6.72x107 C

20, =0, =0, == = 5 =224x10° C,andQ, = 4.48x107° C. But

also, 0, =0, =0,, =2.24x107 C.

b) ¥ =0,/C, =(224x10" C)/(4.00x 10 F)=5.60 V = 7,
V,=0,/C, = (448 x107C)/(4.00x10° F) = 11.2 V.
V,=0,/C, =(6.72x10° C)/(4.00x10° F)=16.8 V.

&) V., =V, —V,=280V—-168V=112V.

24.16: a)
11 1 1 1

=t = . 6
C, C C, (30xI0°F) (5.0x10°F)
=533x10° F' = C,, =1.88x10" F
= Q0 =VC, =(52.0 V)(1.88x10™° F)=9.75x10~ C

b) ¥, =Q/C, =9.75x107 C/3.0x10° F=32.5V.
V,=0/C,=9.75x10" C/5.0x10° F=19.5 V.



24.17: a) O, =VC, =(52.0 V)(3.0x10° F)=1.56 x10~* C.
Q,=VC,=(52.0 V)(5.0x10° F) =2.6 x10™ C.

b) For parallel capacitors, the voltage over each is the same, and equals the
voltage source: 52.0 V.

_ 1 . . .
24.18: C,, = (CL + c%) = (L‘A+ :;—; = d‘féz . So the combined capacitance for two
1 &o d 1

capacitors in series is the same as that for a capacitor of area 4 and separation (d, +d,) .

24.19: C, =C, +C, =20 + ok = 2Ub) Qo the combined capacitance for two

capacitors in parallel is that of a single capacitor of their combined area (4, + 4,) and
common plate separation d.

24.20: a) and b) The equivalent resistance of the combination is 6.0 uF, therefore the
total charge on the network is: O =C_ V(6.0 uF)(36 V) =2.16 x 107*C. This is also the
charge on the 9.0 uF capacitor because it is connected in series with the point b. So:
v, _ 0 _ 2.16><10:64 C_uv
C, 9.0x107F
Then V, =V, =V, +V, =V -V,=36V-24V =12V.
=0, =CJV,=3.0 uF)(12V)=3.6x10" C.
=0,=CV,, =11 uF)(12V)=1.32x10" C.
=0s=0,=0-0,-0,
=2.16x10"* C-3.6x10° C—1.32x10" C.
=48x107 C.
So now the final voltages can be calculated:
O, 48x107°C

" C, 6.0x10°F
_ 0, 48x107°C _

BT C, 12x10°F
c¢) Since the 3 u4F, 11 uF and 6 uF capacitors are connected in parallel and are in

4V.

series with the 9 uF capacitor, their charges must add up to that of the 9 uF capacitor.
Similarly, the charge on the 3 uF, 11 uF and 12 u4F capacitors must add up to the same as
that of the 9 uF capacitor, which is the same as the whole network. In short, charge is

conserved for the whole system. It gets redistributed for capacitors in parallel and it is
equal for capacitors in series.



24.21: Capacitances in parallel simply add, so:

L= 1 = ! + ! = A5+ x) uF =72 uF = x =57 uF.
C., 80uF ((11+4.0+x)uF 9.0uF

€q

24.22: a) C, and C, are in parallel and so have the same potential across them:
0, 40.0x10°C
T C, 3.00x10°F
Thus Q, =VC, =(13.33 V)(3.00 x 10° F) =80.0 x 10~ C. Since Q, is in series with the
parallel combination of C, and C,, its charge must be equal to their combined charge:
40.0x10°C +80.0x10° C=120.0x107°C b) The total capacitance is found from:
1 1 1 1 1
C.. ¢, T 900x10°F  5.00x10°F
C. =321uF

=13.33V

tot

and
-6
v, - O _ 120.0><10_6 C _374V
C, 321x10°F

24.23: V,=Q,/C, =150 uC)/(3.00 uF) =50V
C, and C, are in parallel, so V, =50 V
V, =120V -V, =70V

24.24: a) V =0/C=(2.55uC)/(920x 1072 F)=2772 V.
b) Since the charge is kept constant while the separation doubles, that means that
the capacitance halves and the voltage doubles to 5544 V.

¢) U=1CVr?=1(920x10"7 F)(2772 V)* =3.53x 10" J. Now if the separation

is doubled, the capacitance halves, and the energy stored doubles. So the amount of work
done to move the plates equals the difference in energy stored in the capacitor, which is

3.53x107 J.

24.25: E=V/d = (400 V)/(0.005 m) =8.00 x 10" V/m.
And u=1gE*=1¢/(8.00x10* V/m)* =0.0283 J/m’.



24.26: a) C=0/V =(0.0180 xC)/(200 V) =9.00 x 10" F.

by c=fod L _Cd_ (9.00x10™" F)(0.0015 m)
d

& €

=0.0152 m’.

©) Enpe =V /d = Vo = Epad = (3.00 x10° V/m)(0.0015 m) = 4500 V.

2 -8 2
g v-Q_(180x1070)

== = ——=1.80x10""J.
2C 2(9.00x107" F)

24.27: U=1CV? =1(450x107* F)(295V)* =19.6 J.

24.28: a) O =CV,.

b) They must have equal potential difference, and their combined charge must
add up to the original charge. Therefore:

o _9
V=F‘=C—zandalsle +0,=0=CV,

1 2

C1=CandC2=£sog:L:>Q2:g

2 C (C/2) 2
_3 _2 9 _20_ 2
:>Q—2Q1:>Q1—3QSOV—C—3C_3%
9 UZl(Q_erQ_f]:l[(iQ)z+2(§Q)2}:1Q_2:1CV02
20, ¢, ) 2| C C 3C

d) The original U was U =1CV,’ = AU =2CV,’.

e) Thermal energy of capacitor, wires, etc., and electromagnetic radiation.

2 2
24.29: a) U, :%:%'
0

b) Increase the separation by dx = U = % =U,(1+ dx/ x). The change is

then 0* dx

2e0A4 :
¢) The work done in increasing the separation is given by:
2 2
DO _pge—r=2
2¢,A 2¢,A
d) The reason for the difference is that £ is the field due to both plates. The force
is QF if E is the field due to one plate is Q is the charge on the other plate.

dW =U -U, =



24.30: a) If the separation distance is halved while the charge is kept fixed, then the
capacitance increases and the stored energy, which was 8.38 J, decreases since

U = Q*/2C. Therefore the new energy is 4.19 J.

b) If'the voltage is kept fixed while the separation is decreased by one half, then
the doubling of the capacitance leads to a doubling of the stored energy to 16.76 J, using

U =CV?/2, whenV is held constant throughout.

24.31: a) U=0"/2C
0= ,/2UC:\/2(25.0 N(5.00x10”° F) =5.00x10™* C

The number of electrons N that must be removed from one plate and added to the
otheris N=0/e=(5.00x10"* C)/(1.602x10™" C)=3.12 x 10" electrons.
b) To double U while keeping Q constant, decrease C by a factor of 2.

C =¢,A4/d; halve the plate area or double the plate separation.

0 820x107"*C
vV 240V
Since C = K¢, A/d for a parallel plate capacitor

_ KeyA  (1.00)(8.85x1072C?/N-m?)(2.60 x 10 m?)
- Cc 3.417 x107™" farad

=6.734x107m
The energy density is thus

24.32: C =3.417%x107" farad

d

_Ltcr? 1(3.42x107" farad)(2.40 V)’ se3x10
Ad  (2.60x107°m?)(6.734x107°m) m’

u

-9
2433: a) U=Loy==2U 20201007 0) o6 107 ¢,
2 % 4.00V

b) c — _2me, — o exp(2me, L/ C) = exp(2me, LV Q)
L ln(ra /rb) rb

— 1o = exp(27,(15.0 m) (4.00 V)/(1.60 x 10~° C)) =8.05.

T



24.34: a) For a spherical capacitor:
1 rr  1(0.100 m)(0.115 m)

C=— = =853x10"F
kr,—r,  k(0.115m-0.100 m)

=V =0/C=(3.30x10" C)/(8.53x10™" F)=38.7 V.
1 _ (8.53x107" F)(38.7 V)’

b) U==CV’ = =6.38x107" J.
2 2

24.35: a) u= lSOE2 = g_o(k_?jz ZEKkVZCJZ = ook’ (120 V) (894> 140_11 i
2\r 20 r 2 (0.126 m)
=u=1.64x10"J/m’.
b) The same calculation for 7 =14.7 cm = u =8.83x10~° J/m".
¢) No, the electric energy density is NOT constant within the spheres.

2 9 2
24.36: a) uzlgoE2 =lgo 1 4= 12 (899 10 9 =1.11x107* J/m".
2 2 "\ 4me, r 32z, (0.120 m)

b) Ifthe charge was —8.00 nC, the electric field energy would remain the same
since U only depends on the square of .

24.37: Let the applied voltage be V. Let each capacitor have capacitance C. U =1 CV?

for a single capacitor with voltage V.
a) series

Voltage across each capacitor is ¥/2. The total energy stored is
U, = 26 clr/2] 2) =1lcp?

parallel
Voltage across each capacitor is V. The total energy stored is
U, =2(tcr?)=cr?
U, =4U, b) O = CV for a single capacitor with voltage V.
o.=2clr/2)=cv; g,=2Cr)=2Cr; Q,=20,
¢) E=V/d for a capacitor with voltage

E =V/2d; E,=V/d; E,=2E,



24.38: a) C = Kg, A/d gives us the area of the plates:
_ Cd (5.00x10"" farad)(1.50 x 10~ m)
" Ke, (1.00)(8.85x1072C*/N-m?)
We also have C=Ke, A/d =Q/V,s00 =Ke,AV /d). V /d is the electric field
between the plates, which is not to exceed 3.00 x 10* N/C. Thus
0 =(1.00)(8.85x1072 C* /N-m?)(8.475x 10 m*)(3.00 x10* N/C)
=225x10""C
b) Again, Q= Ke, AV /d)=2.706,A(V | d). If we continue to think of V'/d as
the electric field, only K has changed from part (a); thus Q in this case is
(2.70)(2.25x107°C) = 6.08 x 10 "°C.
24.39: a) 0, =¢, ((3.20-2.50)x10° V/m) =6.20x 10~ C/m’. The field induced in the
dielectric creates the bound charges on its surface.
E, 3.20x10° V/m
E 250x10° V/m

=8.475x107* m’

b) K = =1.28.

24.40: a) E,=KE =(3.60)(1.20x10° V/m)=4.32x10° V/m = 0 = ¢,E, =
3.82x107° C/m?.
b) o, =a(1—%j =(3.82x107° C/m?)(1-1/3.60)=2.76 x 10> C/m”.
¢) U=1CV?=udd =1Ke ,E*Ad
= U =1(3.60)¢,(1.20x 10° V/m)*(0.0018 m)(2.5x 10~ m*) =1.03x 10~ J.

Keyd _ KeydE _ CV _ (1.25x% 10~ F)(5500 V)

= = - =0.0135m’.
v Ke,E - (3.60)6,(1.60x 107 V /m)

24.41: C=

24.42: Placing a dielectric between the plates just results in the replacement of & for g in

the derivation of Equation (24.20). One can follow exactly the procedure as shown for
Equation (24.11).



24.43: a) ¢=Ke, =(2.6)s, =2.3x10™"" C* /Nm”.
b) ¥, =E,d=20x10"V/m)2.0x10° m)=4.0x10* V.
o
c) E=
) K.

)

=o=¢E=23x10""C*/Nm*)2.0x10" V/m)=0.46x10" C/m">.

And o, =a(1—%) =(046x107 C/m*)(1-1/2.6)=2.8x10"* C/m*.

24.44: a) AQ=0-0,=(K -1)Q, =(K -1)C,V, = (2.1)(2.5x 107 F)(12 V) =
6.3x10° C.
b) 0 =001-L)=93x10°C)1-1/3.1)=63x10° C.

¢) The addition of the mylar doesn’t affect the electric field since the induced
charge cancels the additional charge drawn to the plates.

-5
2445: ) Uy=cproy= oo 2UBSXI0D 44y,
2 c, | (3.60x107 F)

=5 -5
b U=lkcyiok=Y _ 2(2.32x10 _7+1.85><10 : D5y
2 c,V (3.60x 10~ F)(10.1V)




24.46: a) The capacitance changes by a factor of K when the dielectric is inserted. Since
V' is unchanged (The battery is still connected),

C Qafter _ 450pC — K — 180

after __

Cbefore - Qbefore - 250pc

b) The area of the plates is 7> = 7(0.0300 m)* = 2.827 x 10 m®*, and the
separation between them is thus
- Keed _ (1.00)(8.85 1072 C? /N-m?)(2.827 x 10 m?)

C 12.5x107"* farad
=2.002x10" m
Before the dielectric is inserted,
c_Knd_0
d V
. od (25.0x107"* C)(2.00 x107* m)
Ke,A  (1.00)(8.85x 1072 C*/N-m?)(2.827 x 10~ m?)
=2.000 V

The battery remains connected, so the potential difference is unchanged after the
dielectric is inserted.
c) Before the dielectric is inserted,

0 25.0x10™2 C
g, KA (8.85x107 C* /N-m?)(1.00)(2.827 x 107> m*)
=999 N/C

Again, since the voltage is unchanged after the dielectric is inserted, the electric field is
also unchanged.

24.47: a) before: V, =0, /C, =(9.00x10™° C)/(3.00x10™° F) =3.00 V
after: C=KC, =15.0F; 0 =0,
V=0/C=0.600V,V decreases by a factor of K
b) E=V/d,the same at all points between the plates (as long as far from the

edges of the plates)
before: E =(3.00 V)/(2.00x107 m)=1500 V/m

after: £ =(0.600 V)/(2.00x107 m) =300V /m



24.48:

24.49:

24.50:

24.51:

Q free

a) §KE A== KFand* =L = p=—1
& € Aned
b) §E d/] _ Hrotal YBotal _ qf ds — E4 d2 q-+ qt4q, — F = q+ th
X & & 4ne,d

:Qtotal =4 + qh :q/K
c) The total bound change is g, = q(% - 1).

a) Equation (25.22): fﬁKE dA=2 = KEA=2 = E = KEQOA = %.
b) V =Ed = Od_ Q—d
KeyA €A

o c=2_#_gad_pe
Vo d d

g,A  £,(0.16 m)’
d  47x10°m

b) O=CV =(4.8x10"F)(12V)=0.58x10"’ C.

¢) E=V/d =(12 V)/(4.7x107°m) =2553 V/m.

d U=1Cr*=1(4.8x10"F)(12V)*=3.46x10" J.

e) If the battery is disconnected, so the charge remains constant, and the plates are

pulled further apart to 0.0094 m, then the calculations above can be carried out
just as before, and we find:

=48x10"F.

a) C=

a) C=241x10"F b) 0=0.58x10"C.

2
¢) E=2553V/m d) U-= 0 _ (0.58x107 C)?

——=6.91x10"J.
2C  2(2.41x107"" F)

If the plates are pulled out as in Problem 24.50 the battery is connected, ensuring
that the voltage remains constant. This time we find:

a) C=24x10"F b) 0=29x10""C o) E:%: =1.3x10° —

Cy? (24x10" F)(12V)?
2

=1.73x107° J.

d U=



. . . . . e 1 W
24.52: a) System acts like two capacitors in series so C,, = (— + —)

¢ To,
¢ ==l o Bl 10 107 0d
b d " 2d 20 2[x) gL

b) After rearranging, the £ ﬁelds should be calculated. Use superposition recalling
E —

ZF - for a single plate (not < o1 since charge O is only on one face).

between 1 and 3: E = Q2 - Q2 +( QJ +( QJ = Q2
2¢,L 2e,L7 ), \2¢L" ), \2¢,L° ), &L

between 3 and 2: E = Q2 + Q2 + Q2 + Q2 =2Q2
2¢,L 2¢,L° ), 280L 26,L° ), &L

between 2 and 4: E = Q 5|+ Q 2 2
2e)L7 )\ 2¢,L° ), 280L
30

U =(180E2]L2d=180( 0’ 4Q Q jde
2 2

_ 9
280L2 j gL’

&/ﬁ\

ew 802L4 €, L4 g, L'
2
AU—U 30 _0d_20'

2 2 2
el gL gL

This is the work required to rearrange the plates.

2
gL

24.53: a) The power output is 600 W, and 95% of the original energy is converted.
= E=Pt=(270x10°W) (1.48x107 s) =400 J .. E, =01 =421 ].

0.95

b U=tcrimc=20 220210 o5hp
2 v (125V)
-5 2
24.54; ¢, =A% J(A20x007 M8, _ g5 g0 g

7.00x10™* m
=C=C,+025pF=7.81x10"F.
Adg,  (420x107° m’)g,

C 7.81x10"° F

Therefore the key must be depressed by a distance of:
7.00x10™* m —4.76 x 10 m = 0.224 mm.

But C:%:d': =476 %10 *m.



24.55: a) d <<r :C = 2me L _ 2me, L __ 2mg,L N 2mr,Le, 80A.
In(r,/r,) In((d+r)/r,) In(+d/r) d d
b) At the scale of part (a) the cylinders appear to be flat, and so the capacitance
should appear like that of flat plates.

24.56: Originally: O, =C/V; =(9.0 uF) (28 V) =2.52 x 107 C; 0, =CV, =(4.0 uF) x
(28 V)=1.12x10"" C,and C., =C, +C, =13.0 uF. So the original energy stored is
U=1CV?=%(13.0x10" F) (28 V)’ =5.10x107 J. Disconnect and flip the capacitors,
so now the total chargeis Q = Q, — Q, =1.4x10™* C, and the equivalent capacitance is
still the same, C,, =13.0 uF. So the new energy stored is :
07 (14x107 0y
2C,, 2(13.0x107° F)
=AU =745x10"J-5.10x107 J=—4.35x107 J.

=754x107*7

24.57: a) C,, =4.00 uF +6.00uF =10.00 F, and Q,,,, = C,, V' =(10.00 uF) (660 V) =
6.6x 107 C. The voltage over each is 660 V since they are in parallel. So:

O, =CV, =(4.00 uF) (660 V) =2.64x 10~ C.
0, =C,V, =(6.00 uF) (660 V) =3.96x 10~ C.

b) O, =3.96x107 C—-2.64x107 C=1.32x107 C, and still C,, =10.00 xF,
so the voltage is V'=0/C= (1.32x10" C)/(I0.00 1F) =132V, and the new charges:

0, =CV, =(4.00 uF)(132V)=5.28x10"* C.
0, =C,V, = (6.00 uF)(132 V) =7.92x 107 C.



24.58: a)

C., =% +%=C. So the total capacitance is the same as each individual capacitor, and

the voltage is spilt over each so that /' =480 V. Another solution is two capacitors in
parallel that are in series with two others in parallel.

b) If one capacitor is a moderately good conductor, then it can be treated as a
“short” and thus removed from the circuit, and one capacitor will have greater than 600
V over it.

1 1

24.59: a) L=—+ 71+L:>C1=C5=2C2 and
C, € C2+ié+éi C;
C2=C3=C4soin+ 2 3 e

C ¢ 3¢, 3

eq
b) Q=CV=(2.52uF)(220V)=5.54x10" C=Q, = O,
=V, =V, =(554x10"C)/ (8.4x10° F)=66 V.
So ¥V, =220-2(66)=88 V=0, =(88 V)(4.2 uF) =3.70x10™"* C. Also V, =V, =

1L(88V)=44V =0, =0, = (44 V)(4.2 uF) =1.85x107*C.

:%c2 = 2.52 4F.



24.60: a) With the switch open:  C,, = (4 + )" + (5 + <)) = 4.00 uF

eq
= O = CogV =(4.00 uF) (210 V) = 8.4 x 10 C. By symmetry, each
capacitor carries 4.20 x 107 C. The voltages are then just calculated via V=0/C.
So: V,=0/C;=140V,andV, =Q/C; =70V =V =V -V =70V.

b) When the switch is closed, the points ¢ and d must be at the same potential, so
the equivalent capacitance is:

-1
Cy = ! + ! =4.5 uF.
B+6)uF  (3+6)uF
= O = Cof/ = (4.50 uF) (210 V) =9.5 % 10~ C, and each capacitor has the same

potential difference of 105 V (again, by symmetry)
¢) The only way for the sum of the positive charge on one plate of C, and the

negative charge on one plate of C,to change is for charge to flow through the switch.

That is, the quantity of charge that flows through the switch is equal to the charge in
0, — 0, = 0. With the switch open, O, = 0, and Q, — O, = 0. After the switch is closed,

0, — 0, =315 uC; 315 uC of charge flowed through the switch.

-1
! + ! + ! }=2.1/,¢F
84 uF  84uF 42 uF
=0=CV =21uF)(36V)=7.50x10"C.

b) U=1CV?=1(2.1uF)(36 V)’ =1.36x10"1J.

c) If the capacitors are all in parallel, then:
C., =84 uF +8.4 uF +4.2 yF) =21 uF and 0 =3(7.56 x10°C) =227 x10™ C,
and V' =0Q/C =(227x10"* C)/(21 uF) =10.8 V.

d) U=1Cr? =121 4F) (108 V)’ =1.22x107 J.

24.61: a) C,, =(



1 1
+
4.0 uF 6.0 uF
= Q0=C,V =(2.4x10" F) (600 V) =1.58x107°C
and ¥, =Q/C, = (1.58 107 C)/(4.0 uF) =395V =V, =660 V =395 V =265 V.

b) Disconnecting them from the voltage source and reconnecting them to

themselves we must have equal potential difference, and the sum of their charges must be
the sum of the original charges:

O=CVand O,=CV=20=0,+0,=(C,+C)V

_ 20 _2(1.58x107C)
C,+C, 10.0x10°F

= 0, =(4.00x10° F)316 V) =1.26 x 107 C.

=0, =(6.00x10° F)(316 V)=1.90x 10" C.

-1
24.62: a) C,, =( J =24x10°F

=316 V.

24.63: a) Reducing the furthest right leg yields € = (hr + wbr + b | =

2.3 uF = C,/3. It combines in parallel withaC, = C=4.6 uF + 2.3 uF =6.9 uF =C,. So
the next reduction is the same as the first: C = 2.3 uF = C,/3. And the next is the same as
the second, leaving 3 C,’s in series so C,, =2.3 uF = C\/3.

b) For the three capacitors nearest points a and b:
O, =C. )V =(23x10™° F)(420 V) =9.7x10™ C
and Q. = C)V, =(4.6x107° F)(420 V)/3=6.44x107" C.
)V, = %(% V) =46.7 V, since by symmetry the total voltage drop over the
equivalent capacitance of the part of the circuit from the junctions between a, ¢ and
d,b is £2V, and the equivalent capacitance is that of three equal capacitors C, in series.

V., is the voltage over just one of those capacitors, i.e., I/30f 42 V.

24.64: (a) C,,, =C, +C, +C, =60 uF
O=CV =(60 uF) (120 V) = 7200 uC
(b) ; — i + L + L
Cequiv Cl CZ C3

Cioie = 545 pF

0 =CV =(5.45 uF)(120 V) = 654 uC



24.65: a) Q is constant.
with the dielectric: V' =Q/C =Q/(KC,)

without the dielectric: ¥, =Q/C,
VIV =K,s0 K =(45.0 V)/(11.5 V) =3.91

b)
A3 | A/3

2A/3 2A3]

Let C, = ¢, 4/d be the capacitance with only air between the plates. With the

dielectric filling one-third of the space between the plates, the capacitor is equivalent to
C, and C, in parallel, where C, has 4, = A/3 and C, has 4, =24/3

C,=KC,/3,C,=2C,/3;C,=C +C,=(C,/3) (K +2)

V=2=2( 3 j=V{ 3 j:(45.0V)(ij=22.8V
C C\K+2 K+2 591

€q

24.66: a) This situation is analagous to having two capacitors C, in series, each with
separation 1 (d — a). Therefore C = (c%"‘c% '=1¢, :%(ﬂ:}/z =22

A _ad d__. d

b) C=—2 =C,——.
d—a d d-a d—a

¢) Asa—>0,C—>C, Andasa—>d,C — oo.

24.67: a) One can think of “infinity” as a giant conductor with V" = 0.

b) C=% = grzg = 4me,R, where we’ve chosen ¥ =0 at infinity.

¢) C,.,=4ng,R . =41e,(6.4x10° m)=7.1x10"* F. Larger than, but
comparable to the capacitance of a typical capacitor in a circuit.

earth



24.68: a) r<R:u =%80E2 =0.

2 2
b) r>R:u=%80E2=lao( 9 J 9

2 7\ drey? - 32rlert

Q2 Ood}"_ Q2

> =
8me, % v~ 8me R+

c) U= IudV =4z Trzudr =
R

d) This energy is equal to 1 47?; = which is just the energy required to assemble all

the charge into a spherical distribution. (Note, being aware of double counting gives the
factor of 1/2 in front of the familiar potential energy formula for a charge Q a distance R

from another charge Q.)
e) From Equation (24.9): U = % = ng = from part (¢) = C =4me R, as in
Problem (24.67).

2 2.2
24.69:  a) r<R:u=%80E2:lgo(in’j kO

2 R* )  8aR°-
1 1 (kQ) kO
0 r>Ru=gut =7a (] - {Z
R 2 R )
c)r<R:UzjudV:47zJ.r2udr:k_Q6J'r4d,,:k£_
0 2R" 10R
© 2 ™ > 2
r>R:U:IudV=4nIr2udr:—kQ Id—;ﬁ:kg:U:—?’kQ .
R 2 o 2R 5R
1 1 Y ? 22
24.70: a) u=—¢g,E’ =—¢, -
2 2 7\ 2me,r 8n e, r .

L) tdr U
~—=

2
b) UzjudV:ZELjurdr: s In(r, /r,).
€

dme, < r L 4rn

¢) Using Equation (24.9):

N % ML
==_=—=__In(r,/r)= In(r, /r,) =U of part (b).
2C  4re,L (/1) Are, (/1) part (b)



1 _ _
2471: C, = [81/1 jl+(82AJl B R Y 1: d (1 1 |
“\d/2 d/2 2e4) | 2¢,4 26,4\ K, ' K,

~C = 2¢,4A( KK, .
K, +K,

24.72: This situation is analagous to having two capacitors in parallel, each with an

area4.So:
e A2 e, A2 ¢4
C,=C+C, = ld/ + 2d/ =20d (K, + K)).

o _050x107° C/m’
Ke, - (5.4)¢,
b) ¥V =Ed=(1.0x10" V/m) (5.0 x10~° m)=0.052 V. The outside is at the higher
potential.
¢) volume =107 m’ = R~2.88x10° m
= shell volume =47R*d = 47(2.88x10° m)*(5.0x10°m)=52x10" m’
= U=uV =(1Ke,E*)V =1(5.4)6,(1.0x10" V/m)*(5.2x107"" m’) =1.36 x 107" J.

24.73: a) E= =1.0x10" V/m.

Ke, A, (2.50),(0.200 m*) (3000 V)

24.74: a) Q=CV = v —~ =1.33x107° C.
1.00x 107" m
b) 0. =0(1-1/K)=(1.33x10° C) (1-1/2.50)=7.98x 107" C.
-6
o E=2="92 _ 133x10°C 54 165 y/m,
e Ke A (2.50)¢,(0.200 m*)

d U= %QV = %(1.33 x107° C) (3000 V) =2.00x 107" I.
U 2.00x107°J
e) u=—on-= >
Ad  (0.200 m?) (0.0100 m)
u=1Ke E* =1(2.50),(3.01x10° V/m)* =1.00 J/m’.

f) In this case, one does work by pushing the slab into the capacitor since the
constant potential requires more charges to be brought onto the plates. When the charge
is kept constant, the field pulls the dielectric into the gap, with the field (or charges)
doing the work.

=1.00 J/m® = or




24.75: a) We are to show the transformation from one circuit to the other:

G,

L&
| |
| || |
Cz 9, q,
C)' Cx
—c,

c b
Circuit 1 Circuit 2
. . - + . .
From Circuit 1:V,, = AR EPY v, = qzc—%, where ¢, is derived from V, :
y x
pool G4 b4, COC 4 4| (4 o
c. ¢ C.+C,+C.|C, C, c, C

From Circuit 2: V, = Iy $hrd, q, L + = +4, Land
Cl C3 Cl C3 C3

+ 1 1 1
LT R PR S (R S |
C2 C3 C3 C2 C3
Setting the coefficients of the charges equal to each other in matching potential
equations from the two circuits results in three independent equations relating the two
sets of capacitances. The set of equations are:

L;( _;_;J;;( _;_;]and; L
¢ C, KC, KC. | C, C, KC, KC C, KCC
From these, subbing in the expression for K, we get:

¢ =(C,+CC +C.C)/C,.

C,=(C,C,+C,C. +C.C)/C,.

G =(CC,+CC.+CC)/C..



24.76: a) The force between the two parallel plates is:
2 2 2 2 2 2
F:qE:Q_U: q =(CV) =80124 V =80A12/.
2, 26,4 2¢,4 z° 2¢,4 2z

b) When V' =0, the separation is just z,.So:

2 2
=4k(z, —z) = 802/”2/ =27 -27°z, +%— .
z

F,

4 springs
c¢) For 4=0.300 m?, z,=1.2x 10° m, k=25N/m,and ¥V =120V,

220 —(2.4%x107° m)z* +3.82x10™"" m’ =0 = z=0.537 mm, 1.014 mm.
d) Stable equilibrium occurs if a slight displacement from equilibrium yields a

force back toward the equilibrium point. If one evaluates the forces at small
displacements from the equilibrium positions above, the 1.014 mm separation is seen to

be stable, but not the 0.537 mm separation.

24.77: a) C, = %((L —x) L+ xKL) :%(L +(K - Dx).

b) AU = %(AC)VZ where C=C, + %(—dx + diK)

_ 2
o AU = L[ &l gy lpe KDL
2\ D 2D

c¢) Ifthe charge is kept constant on the plates, then:
gLV 1 21 of €

= L+(K-Dx), and U==CV " ==CJV"| —
Q==7 (L + (K =Dx) > 29

2 2
S (1_ £l (K_Ddxj:AU:U_UO:_%dx.

0

2
d) Since dU =—-Fdx = —%dx, then the force is in the opposite direction to the

motion dx, meaning that the slab feels a force pushing it out.



24.78: a) For a normal spherical capacitor: C, = 4re, (rbr“_’bru) Here we have, in effect, two
parallel capacitors, C, andC,, .

KC
€, =" =27rK€0( Loy Jand CU=%=27Z¢90( L }

rb - ra rb - ra
b) Using a hemispherical Gaussian surface for each respective half:

2 2
EL47W :&:EL:—QL - and EU47W Z&:Euz—QUz.
2 Ke, 2nKe,r 2 &, 2meyr

But 9, =VC, and O, =VCy, 0, + 0y = 0.

Vc,K 0 KQ
So: 0, =—2—=KQ0,=0,(1+K)=0=>Q,=—=—and Q, = :
0 == Q=0(1+K)=0=0, = =ad 0, T+ K
sp=22 1 _ 2 9 ,yp-9¢ L _ 2 O
1+ K 2nKeyr” 1+ K 4ne,r 1+ K 2nKeyr” 1+ K 4nKe,r
c) The free charge density on upper and lower hemispheres are:
0 %
(Gfr v = Uz = 2Q and (Gfr o = 2= 2Q .
‘ Arr”  Anr (1+ K) ‘ rr,”  Amr, (14 K)
0, KQ 0, KO
oc.) = = and (o =
( T ). 47z'ra2 4717’02(1 + K) ( S )e

47z'rb2 - 477:I’b2(1 + K)
(K-1) 0 K K-1 Q
d) o0 =0, 1-1/K)= = )
) Ly fru( / ) K 47tl’a2 K +1 K + 1 47[}’a2
K -1 K K-1
o, =0, (l—l/K):( ) Q2 = QZ.
b g K 4w K+1 K+147rn

e) There is zero bound charge on the flat surface of the dielectric-air interface, or else

that would imply a circumferential electric field, or that the electric field changed as we
went around the sphere.

24.79: a)

s
AR} = s
+H
}
+H
4
+
++H

b) C= 2(%) _ 2(4.2)5,(0.120 m)*

— = C=238x10"F.
d 45%x10" m



24.80: a) The capacitors are in parallel so:
C- €y WL _ W (L —h) +K80Wh _ g,WL 1JFK_h_ﬁ K
d d d d

L L
[ Kh hj
=[1+——|
L L
b) For gasoline, with K =1.95:
ifull: Keﬁ-(h = gj = 1.24;% full: Keﬁ.(h = %) =1.48;

eff

3 3L
2 full:Keﬁ,(h :Tj =1.71.
c¢) For methanol, with K =33:
1 L 1 L

3 3L
Z full Keff(h = Tj =25.

d) This kind of fuel tank sensor will work best for methanol since it has the greater
range of K ; values.



Capitulo 25



25.1: O=1It=(3.6 A)3)(3600s)=3.89x10* C.

25.2: a) Currentis given by I =2 = 5= =875x10" A.
b) I =ngv,A
8.75x107 A
Ve = = 28 19 32
ngd (5.8x107°)(1.6x107" C)(n(1.3x10~ m)~)
=1.78x10™° m/s.

s 4.85A
“ ngAd  (8.5x10%)(1.6x107" C)(n/4)(2.05x 107 m)?)
=1.08x10™* m/s

= travel time =<4 = —>"" _ — 6574 s =110 min
Va 1.08x107* m/s

b) If'the diameter is now 4.12 mm, the time can be calculated using the formula above
or comparing the ratio of the areas, and yields a time of 26542 s =442 min.

c) The drift velocity depends on the diameter of the wire as an inverse square
relationship.

25.3: a) v

25.4: The cross-sectional area of the wire is
A=mr’ =m(2.06x107 m)> =1.333x107° m’.
The current density is
1 8.00A

J=== —— =6.00x10" A/m’
A 1333x107” m
We have v, = J/ne; Therefore
5 2
n:L: - 6.00x10 A/rflw 6,94 x10% electr30ns
v,e (5.40x107 m/s)(1.60x 107" C/electron) m

25.5:  J =n|q|v,, so J/v, is constant.
IV = T3/ V2
v, =, (J,]J) = v, (I,/ 1) = (1.20 x 10~ m/s)(6.00/1.20) = 6.00 x 10~ m/s



25.6: The atomic weight of copper is 63.55 g/mole,and its density is 8.96 g/cm®. The
number of copper atoms in 1.00 m’ is thus
(8.96 g/cm®)(1.00 x 10° cm®/m*)(6.023 x 10* atoms/mole)
63.55 g/mole
=8.49 x 10* atoms/m’

Since there are the same number of free electrons/m’® as there are atoms of copper/m®

(see Ex. 25.1), The number of free electrons per copper atom is one.

25.7: Consider 1 m’ ofsilver.

density =10.5x10° kg/m*, so m =10.5x10° kg

M =107.868 x 10~ kg/mol, so n =m/M =9.734 x 10* mol and
N =nN, =5.86x10% atoms/m’

If there is one free electron per m*, there are 5.86 x 10* free electrons/m®. This
agrees with the value given in Exercise 25.2.

25.8: a) O, =(ng +ny,)e=(3.92x10" +2.68x10')(1.60 x 10 C) = 0.0106 C

=1= Quu _ 0.0106C _ 0.0106 A =10.6 mA.
t 1.00s
b) Current flows, by convention, in the direction of positive charge. Thus, current

flows with Na™ toward the negative electrode.

06558 _399 .
3 0

b) The same charge would flow in 10 seconds if there was a constant current of:
I1=0/t=329C)/(8s)=41.1A.

8 8
25.9: a) O=|[Idi=[(55-0.651)dr=55 +
0 0

25.10: a) J=1=—"%" _-681x10° A/m’.

4 (23x107% m)?
b) E=pJ=(1.72x10" Q-m)(6.81x10° A/m*) =0.012 V/m.
c) Time to travel the wire’s length:
I Ingd (4.0m)8.5x10%/m*)(1.6x107"° C)(2.3x10~° m)’
v, 1 3.6A
=1333 min = 22 hrs!

=8.0x10%s

25.11: g2 PL _ (L72x107 Q-m)(24.0 m)

=0.125Q.
A (/4)(2.05x107° m)?



RA _ (1.00 Q)(x/4)(0.462 x 10~ m)’

=9.75m.
p 1.72x107° Q-m

25.12: R:p—j:L:

25.13: a) tungsten:

_pl (5.25x107° Q/m’)(0.820 A)
T4 (7/9(326%x10° m)’

b) aluminum:

)= pl _(2.75x10° Q/m*)(0.820 A)

E=pJ =5.16x10" V/m.

E

=2.70x107 V/m.

A (m/4)(3.26 x107* m)’
L L nd,’ nd.’
25.14: R, =R, = Pat Lol T0u ey _ gy |Pa
Ay Ae, 4p 4 4pe, Pa
-8
= d, = (326 mm) |~ My 6,
2.75%10° Q-m

25.15: Find the volume of one of the wires:
R= E S0 4= p—Land
A R
_ 1.72x10° Ohm - m)(3.50m)’

0.1250hm
m = (density)V = (8.9 x10° kg/m*)(1.686 x10° m*)=15g

=1.686 x 10 *mcb

2
volume = AL = P ]g

25.16:
3.50cm
j= 32 95 cm

7 :3'25&:1.625 mm
2



25.17: a) From Example 25.1, an 18-gauge wire has 4 =8.17 x10~> cm’
I=J4=(1.0x10° A/lem*)(8.17x10” cm®) = 820 A
b) A=1/J=(1000A)/(1.0x10° A/em*)=1.0x10" cm?
A= 50 r =+[Afm =/(1.0x107 cm? /z =0.0178 cm
d=2r =036 mm

25.18: Assuming linear variation of the resistivity with temperature:
p=pyll+olT - T))]
= po[1+ (4.5x1073/°C)(320 — 20)°C]
=2.35p,
Since p=E/J, the electric field required to maintain a given current density is
proportional to the resistivity. Thus £ =(2.35)(0.0560 V/m)=0.132 V/m
R:ﬁzﬁzﬁz 2.75x10°Q-m

: =1.53x107Q
A4 L 1.80m

25.19:

25.20: The ratio of the current at 20°C to that at the higher temperature is
(0.860 A)/(0.220 A) = 3.909. Since the current density for a given field is inversely
proportional to p(p = E/J), The resistivity must be a factor of 3.909 higher at the higher
temperature.

L 1+ a(T-T)

Po

2] _

TRk SRV NE L Cd PP
4.5x107/°C

T=T,+

R—K—&_ﬂj,,_ /IPL _\/(6-00 A)(2.75x107° Q-m)(1.20 m)
TV

2521: 1 A w’ 7(1.50 V)
~2.05x10™ m.
4 2
25.22; p=FA_VA_ @S0 VIZ634x107 m)” ) 57 167 0.
L I (17.6 A)(2.50 m)



EA _ (049 V/m)(%/4(0.84x 10" m)*)

25.23:a) I=JA=— — =11.1 A.
p (244 x107° Q-m)
-8
by o=t (LTAIC44X107 Qm6dm) _y 5y
A (/4)(0.84 x 10~ m)
c) R:K: 313V =0.28 Q.
1 11.1A

25.24: Because the density does not change, volume stays the same, so L4 = (2L)(4/2)
and the area is halved. So the resistance becomes:
R=PCD _4rL _4p
A/2 A
That is, four times the original resistance.

RAJ Rl _V 0938V

25.25: a) E=pJ = = =1.25V/m.
L L L 075m
by poRA_V _ 0938V = 2.84x10° Q-m.
L JL (440x10" A/m*)(0.75m)
R-R
25.26: C=a(T, -T)

L__R-R__  15120-1484Q
(T, —T)R, (34.0°C—20.0°C)(1.484 Q)

=1.35x107 °C™,

25.27:)R, - R, = Ra(T, — T,)= R, =100 Q — 100 ©(0.0004°C")(11.5°C) = 99.54 Q.
b) R, -~ R, =Ra(T, —T)= R, =0.0160 Q + 0.0160 (~0.0005°C™')(25.8°C) =
0.0158 Q.

R, -R
25.28: T, T =— . T, =T+

215.8Q0-2173Q

= +4°C=17.8°C.
(-0.0005°C™")(217.3 Q)




25.29: a) If 120 strands of wire are placed side by side, we are effectively increasing the
area of the current carrier by 120. So the resistance is smaller by that factor:

R=5.60x10"°Q/120=4.67x10" Q.
b) If 120 strands of wire are placed end to end, we are effectively increasing the
length of the wire by 120, and so R = (5.60x10™° Q)120=6.72x10™* Q.

25.30: With the 4.0 Q load, where r = internal resistance
126 V=(r+4.0Q)I

Change in terminal voltage:
AV, =r[=126V -104V =22V

2.2
=22V
.
Substitute for I: 12.6 V = (r + 4.0 Q)(z.z vj
r
Solve for r: r=0.846 O

_1.72x10™ Qm)(100 x 10°m)
- 7(0.050m)>

V = IR = (125A)(0.219Q) = 27.4V
b) P=VI=(274V)(125A)=3422 W =3422 /s

Energy = Pt = (3422 J/5)(3600s) =1.23x 10" J

=0.219Q

2531: a) R=2L
A

2532:a) V., =E-V,=240V-212V=28V=r=28V/4.00A=0.700 Q.
b) V,=212V=R=212V/4.00A=530Q.

25.33: a) An ideal voltmeter has infinite resistance, so there would be NO current
through the 2.0 Q resistor.
b) V, =& =5.0V; since there is no current there is no voltage lost over the internal

resistance.
¢) The voltmeter reading is therefore 5.0 V since with no current flowing, it measures
the terminal voltage of the battery.



25.34: a) A voltmeter placed over the battery terminals reads the emf: € =24.0 V.
b) There is no current flowing, so V, =0.
c) The voltage reading over the switch is that over the battery: V., =24.0 V.

d) Having closed the switch:
I1=240V/5880=4.08A=V,6 =240V —(4.08 A)(0.28Q)=229V.

V. =1IR=(4.08 A)(5.60 Q)=229 V.
V. =0, since all the voltage has been “used up” in the circuit. The resistance of the
switch is zero so V, = IR = 0.

25.35: a) When there is no current flowing, the voltmeter reading is simply the emf of
the battery: £€=3.08 V.

b) The voltage over the internal resistance is:
0.11V

Y =308V =297V=011V=r=r- =0.067 Q.
I 165A
¢) V, =297V =(1.65A)R
R 29TV eh
1.65 A

25.36: a) The current is counterclockwise, because the 16 V battery determines the
direction of current flow. Its magnitude is given by:

IZZ(C,‘: 160V -80V _ 047 A
2R 1.6Q+50Q+140Q+9.0Q

b) ¥, =160V — (1.6 Q)(0.47 A)=152 V.

) V.. =(5.00)(0.47 A) + (1.4 Q)(0.47 A) +8.0V=11.0 V.
d)

16V




25.37: a) Now the current flows clockwise since both batteries point in that direction:
X 160V +80V _141A

TYR O1.60Q+50Q+14Q+9.00Q
b) ¥, =-16.0V+ (1.6 Q)(1.41A)=-13.7 V.
Q) V. =—(5.0)(1.41A) - (1.4 Q)(1.41A) +8.0V=-1.0V.
d)

16V

25.38:a) V, =19V=1=V, /R, =19V /9.0 Q=021A.

b) 2E=YIR=8.0V=((1.6+9.0+14+R)Q)021A)= R :3'—‘2‘?=26.1Q.

c)

A
16V R
t
8V
|
| | .
b a c
25.39: a) Nichrome wire:
A
16.0 |
12.0
Voltage
V) 8.0 1
4.0 /
0.0 L~ >
0.00 1.00 2.00 3.00 4.00

Current (A)

b) The Nichrome wire does obey Ohm’s Law since it is a straight line.
c) The resistance is the voltage divided by current which is 3.88 Q.



25.40: a) Thyrite resistor:

4.80

4.40 o

4.00 ~
Voltage /U/

vy 360 »

3.20 /T/
2.80
2.40 }/ >

0.00 1.00 2.00 3.00 4.00
Current (A)

b) The Thyrite is non-Ohmic since the plot is curved.
c) Calculating the resistance at each point by voltage divided by current:

A

6.00 \ﬂ
5.00 :

Resistance 400

(Ohms) \
3.00 \

2.00 ™
1.00 E—
0.00 1.00 2.00 3.00 4.00
Current (A)

2541: a) r=E/1=150V /148 A=0.101Q.
b) r=E/I=150V /6.8 A=0.22Q.
c) r=&/I1=12.6V/1000 A =0.0126 Q.

2542: a) P=V?/R=R=V*/P=(15V)*/327 W =0.688 Q.

b V=R=o1="= 1V
R 0.688Q

=218 A.

25.43: P=VI=(650 V)(0.80 A) =520 W.

25.44: W =Pt =1Vt =(0.13 A)(9 V)(1.5)(3600's) = 6318 J.



2545:a) P=I"R=>p= P TR _JAR_ J2A(pL] A) =J?p= p=JE since
vol AL AL L
E=pl.
b) From(a) p=J’p.
¢) Since J = E/p, (a) becomes p = E*/p.
25.46: a) I=YE/R,,, =80V/17TQ=047A= P, =I"R=(047 AY’(5.0Q) =
1.1Wand P, =I*R=(0.47 A)*(9.0Q)=2.0 W.
b) B, =& —I'r=(16V)(0.47 A)-(0.47 A)’(1.6Q)=72 W.
¢) B, =&+ Ir’ =(8.0V)0.47 A)+(0.47 A)*(1.4Q) = 4.1 W.
d) (b)=(a)+(c)

25.47: a) W =Pt=1Vt=(60 A)(12 V)(3600s) =2.59 x10° J.
b) To release this much energy we need a volume of gasoline given by:
6
m=2200 T 600 vor=" = 000K (o 10 m® = 0.062 liters.
46,0001 /g L 900kg/m
c) To recharge the battery:

t = (Wh)/ P = (720 Wh) /(450 W) =1.6 h.

25.48: a) 1=E/(R+r)=12V/10Q=12A=P=E=(12V)12A)=144W.
This is less than the previous value of 24 W.
b) The work dissipated in the battery is just: P =17 = (1.2 4)*(2.0 Q) =29 W.

This is less than 8 W, the amount found in Example (25.9).
c) The net power output of the battery is 14.4 W —2.9 W =11.5 W. This is less than

16 W, the amount found in Example (25.9).

25.49: a) I=V/R=12V/6Q=20A=P=E[=(12V)(2.0A)=24W.
b) The power dissipated in the battery is P =17 =(2.0 A)*(1.0 Q) =4.0 W.
c) The power delivered is then 24 W —4 W =20 W.

25.50: a) 1= &/R=3.0V/17Q=0.18 A= P=1"R=0.529 W.

b) W =Pt=1Vt=(0.18 A)3.0 V)(5.0)(3600 s) = 9530 J.
c) Now if the power to the bulb is 0.27 W,

3.0V

P=I'R=>027TW=| ————
17Q+ R

2
J (17Q)=(17Q+R)’=567Q°" = R=68Q.



25.51: a) P=V?/R=R=V*/P=(120 V)*/540 W =26.7 Q.
b) I=V/R=120V/26.7Q=4.5A.
c) Ifthe voltage is just 110 V, then / =4.13 A = P=VI =454 W.

d) Greater. The resistance will be less so the current drawn will increase, increasing
the power.

25.52: From Eq. (25.24), p = —=—.
nertT

-31
=>1= ”Z = TR 2.11x10 ,fgz =1.55x10"s.
ne’p (1.0x10° m)(1.60x10""C)" (2300 Q2 - m)

b) The number of free electrons in copper (8.5x10** m™) is much larger than in
pure silicon (1.0x10'° m™).

25.53: a) p= RA_(0104Q) (@/4) 250 x10"m)’

=3.65x10"° Q- m.

L 14.0 m
-3 2
b) ]:JA:E_A:(1.28V/m)(7r/4)fg2.50><10 m) 17 A
p 3.65x10° Q-m
J E 1.28 V/m
c) v

‘T g png (3.65x10°Q-m) (8.5x10% m ) (1.6x10"° C)
=2.58x10" my/s.

25.54: r=2.00 cm
T=0.100 mm

VvV VA _VQwT)

R opljA pl ol
~(12V) (27)(2.00 x 107 m) (0.100 x 10~ m)
- (1.47x10° Q- m) (25.0 m)

=410 A



25.55: With the voltmeter connected across the terminals of the battery there is no
current through the battery and the voltmeter reading is the battery emf; ¢ =12.6 V.

With a wire of resistance R connected to the battery current / flows and
e —Ir—IR=0

Call the resistance of the 20.0-m piece R,; then the resistance of the 40.0-m piece
s R, =2R,.

e—1r—IR =0; 12.6 V—(7.00 A)r —(7.00 A)R, =0

e—Lr—1,2R)=0; 12.6 V-(4.20 A)r — (420 A)(2R,) =0

Solving these two equations in two unknowns gives R, =1.20Q. This is the
resistance of 20.0 m, so the resistance of one meter is [1.20€2/(20.0m)] (1.00m) = 0.060Q2

25.56: a) [=K=L
R R, +R,
and
-8
R, - PeuLey _ 1.72x107° Q m}4(0.§ m) —0.049 0,
A, (7/4) (6.0 x 10" m)
and
L 2Q.
= pAg Ag _ (147)(10 Q 1’1’17)4(1221’1’1) ~0.0620Q
i 4, (7/4) (6.0x 107" m)
_ 50V _45 A
0.049 Q +0.062 Q2

So the current in the copper wire is 45 A.
b) The current in the silver wire is 45 A, the same as that in the copper wire or else
charge would build up at their interface.
IR, (45A)(0.049 Q3)

c) E., =Jp., = =2.76 V/m.
) Cu pCu LCM 08 m /
IR 45 A) (0.062 Q
d) E,,=Jp,, = LAg ! i(2m ) 2233 V/m.
Ag :

e) V,, =IR,, =(45A)(0.062Q)=2.79 V.



25.57: a) The current must be the same in both sections of the wire, so the current in the
thin end is 2.5 mA.

-8 -3
b) E,, =ps =20 072X10 7 Qm)@5xI07A) 505y,
‘ A (1/4) (1.6x107 A)

I (172 x10° Q- -m)(2.5x10° A
C) E048mm:pJ:p_:( )(_3 2 )

A (7/4) (0.80x 107 A)

—8.55x107° V/m (= 4E, ).
d) V = E146mmL146mm + E L

0.8 mm~~0.8 mm

=¥ =(2.14x107° V/m) (1.20 m) + (8.55x 10> V/m) (1.80 m) =1.80x 10 V.

25.58: a) K =n (lmvjj
volume 2
K 1 28 -3 =31 -4 2
1 =5(8.5x10 m ) (9.11x107" kg) (1.5x107" m/s)
volume
=8.7x107"" J/m’.

b) U =qV =ne(volume)l = (8.5x10%m™) (1.6 x107°C) (10° m*) (1.0 V) =13600 J.
And the kinetic energy in 1.0 cm”® is K =(8.7x107" J/m’) (10°m) =
8.7x107¢ J. 50 L = 130007

= 1.6x10".
K 87x10MJ



25.59: a)

Axr® 4
b) ]zﬁ: V., 4mab :>J=£: V., 4mab - V.,ab .
R pb-a) A  pb—a)dnr- p(b-a)r
c) Ifthe thickness of the shells is small, we have the resistance given by:
Rzﬂ(l_ljz pb=a) pL2 =£, where L =5b—a.
4z\a b 4mab 4ra A

b
25.60: ) dR=LL L[ L _p ]
T

25.61: E=pJand E = 2= 52- = pJ = 52- = AJ = [ = 32> = leakage current.

AKs Kegp —




25.62: a) [ =% = J=4=37=0777=-77- So tomake the current density a
maximum, we need the length between faces to be as small as possible, which means

L =d. So the potential difference should be applied to those faces which are a distance
d apart. This maximum current density is J,,,, =7

b) For a maximum current / =% =72 = J4 must be a maximum. The maximum area

is presented by the faces that are a distance d apart, and these two faces also have the
greatest current density, so again, the potential should be placed over the faces a distance
d apart. This maximum current is

vd

Ly = 6=
p
-7
25.63: a) R PL_©5x107 Q- m) (0.122 m)
A (r/4) (0.0016 m)
b) p(T)=p,(1+aAT) = p(60°C)=(9.5x107 Q-m) (1+ (0.00088(C°)") (40°C)
= p(60°C)=9.83x107 Q -m = Ap=3.34x10" Q- m.

=0.057 Q.

¢) AV =BV,AT = AAL = A(BLAT) = AL = BLAT = (18x107 (C°) ") x
(0.12 m) (40°C) = AL = 8.64 x10™* m = 0.86 mm. The volume of the fluid remains

constant. As the fluid expands the container, outward expansion “becomes” upward
expansion due to surface effects.

d) R=LE = ap=20L, PAL
A A A
AR (3.34x10° Q- m) (0.12 m) N (95x107° Q-m) (0.86x 10 m)
(7/4) (0.0016 m)’ (7/4) (0.0016 m)’
=2.40x10" Q.

e) From Equation (25.12), o =+ (R% - 1): W((O'Osmofozs';“gmﬁ Q) _ 1):

1.1x107 (C°)". This value is greater than the temperature coefficient of resistivity and
therefore is an important change caused by the length increase.



D€ 8OV-40V
MR 2400

=V,=8.00V-(0.167A)(8.500Q)=6.58 V.
b) The terminal voltage is

25.64: a) [ = =0.167 A

V, =+4.00V +(0.167 A) (0.50 Q) =+ 4.08 V.

¢) Adding another battery at point d in the opposite sense to the 8.0 V battery:

;_2€ _103V-80V+40V
>R 245Q
=V, =4.00V -(0.257 A) (0.50 Q) =3.87 V.

=0.257 A, and so

25.65:a) V,=E-Ir=84V=E-(150A)rand9.4V=E+(3.50A)r
=94V =84V+(1.50 A)r)+(3.50 A)r

94V -84V

~ 500A

b) £€=84V +(1.50A)(0.20Q)=8.7 V.

=r =0.2Q.

25.66: a) [ =V/R=14kV/(10kQ +2kQ)=1.17 A.
b) P=I’R=(1.17 A)* (10,000 Q) =13.7 kW.
c) If we want the current to be 1.0 mA, then the internal resistance must be:

R+r:M:1.4x107Q:>R:14MQ—10sz14MQ.
0.001 A

pL  (5.0Q-m)(0.10 m)
A4 7(0.050 m)?
b) ¥V =IR=(100x10"A) (1000 Q) =100 V.
¢) P=VI=(100V)(100x10°A)=10 W.

25.67: a)R = =1000 Q.




25.68: a) ¥ =2.501 + 0.360/° = 4.0 V. Solving the quadratic equation yields
I =134 A or-8.29 A, so the appropriate current through the semiconductor is
I1=134A.
b) Ifthe current / =2.68 A,
=V =(2.50V/A)(2.68 A)+(0.36 V/A*) (2.68 A)* =93 V.

25.69: V=IR+V()=IR+al + pI* =(a+ R) I + BI’
=prr+(R+a)I-V =0
=(03)IF+38+32)1-126=0=>1=142A.

25.70: a) r:£:7'86V:0.85Q:>[: € _ 7.86 V
I 925A R+r 085Q+24Q

b) BI*+(a+7r)I—E=0=>036"+(2.50+0.85) I — 7.86 =0
—1=194A

¢) The terminal voltage at this current is
V,=E-Ir=786V-(1.94A)(0.85€0)=6.21V.

=242 A.

25.71: a) With an ammeter in the circuit:
I=L:>8=1A(I’+R+RA).
r+R+R,

So with no ammeter:

I = € [A(MJ=IA(1+ R, )

r+R= r+R r+R
b) We want:
1 R, R,
—=1+——|=1.0l= ~0.0l1= R, (0.01) (0.45Q +3.8Q))
1, r+R r+R
=0.0425 Q.

c) This is a maximum value, since any larger resistance makes the current even less
that it would be without it. That is, since the ammeter is in series, ANY resistance it has
increases the circuit resistance and makes the reading less accurate.



25.72: a) With a voltmeter in the circuit:

=—% vy —e—p-gli-—"_]|
r+RV r+RV
b) We want:
Vo (17 _|2099=—" =001
& r+R, r+R,
:Ryz%o'(ln”:99r=99-o459=44.69.

c¢) This is the minimum resistance necessary—any greater resistance leads to less
current flow and hence less potential loss over the battery’s internal resistance.

25.73: a) The line voltage, current to be drawn, and wire diameter are what must be
considered in household wiring.
b) P=VIi=1= L = 4200 W =35 A, so the 8-gauge wire is necessary, since it can
Vo120V
carry up to 40 A.
IpL  (35A)° (1.72x10°° Q-m) (42.0 m)
A (77/4) (0.00326 m)’
d) If 6-gauge wire is used,
I’pL  (35A)* (1.72x107° Q-m) (42 m)
A4 (7/4)) (0.00412 m)>
= AE = APt =(40 W) (365) (12 h) =175 kWh

= Savings = (175 kWh) ($0.11/kWh) = $19.25.

=106 W.

¢) P=I'R=

=66 W

pP=

25.74: Tnitially: R, =V/I, =(120 V)/(1.35 A) =88.9 Q0.
Finally: R, =V/I, = (120 V)/(1.23 A)=97.6 Q.

R, R,
And —f:1+a(Tf—To):>(Tf_T0):l &= 1_4 _ 97.6Q
R, a| R, 45%107°C" | 8890

=T, ~T,=217°C = T, =217°C + 20°C = 237°C.
b) () P, =VI, =(120 V) (135 A) =162 W
(i) P, =VI, =(120 V) (1.23 A) =148 W



& 120V-80V
R 10.0 Q

b) P,,=1"R,, =(040A) (10Q)=1.6 W.

c) Power generatedin ,, P=E€, I =(12.0V) (040 A)=4.8 W.

d) Rate of electrical energy transferred to chemical energy in
E,P=E1=8.0V)x(040A)=32W.

e) Note (c) =(b) + (d), and so the rate of creation of electrical energy equals its rate
of dissipation.

25.75: a) I = =0.40 A.

_pL_(20x107Q-m) (2.0 m)

25.76: a) R, = —=1.57x10" Q
A (7/4) (0.018 m)
-8
. _pL_(1.72x10° Q-m) (3;5 ™ _ 0120
4 (/4) (0.008 m)

—=V=IR=1(R,, +R,)=(15000A)(1.57x10" Q+0.012 Q) =204 V.
b) E =Pt =1IRt = (15000 A)*(0.0136 Q) (65x 10 5) =199 J.

25.77: 2) S F=ma=|q|E=9_2
m E
. . L
b) Ifthe electric field is constant, V, = EL = m = ;__
m bc

c) The free charges are “left behind” so the left end of the rod is negatively charged,
while the right end is positively charged. Thus the right end is at the higher potential.

d) a= Vielg| _ (1.0x 107 V) (1.6x107" C)
mL (9.11x107" kg) (0.50 m)
e) Performing the experiment in a rotational way enables one to keep the
experimental apparatus in a localized area—whereas an acceleration like that obtained in

(d), if linear, would quickly have the apparatus moving at high speeds and large
distances.

=3.5x10% m/s>.




25.78: a) We need to heat the water in 6 minutes, so the heat and power required are:
Q =mc AT =(0.250 kg) (4190 J/kg°C) (80°C) = 83800 J

p_Q_ 838000 ..o
t  6(605s)
2 2 2

But == gL _020V) 150
R P 233W

2 -5 3
b) Rzp_L:pL - R V01: (61.8Q)(2.5_6><10 m)=39m.
A vol Yo, 1.00x10™ QQ-m

Now the radius of the wire can be calculated from the volume:
-5 3
vol= L(wr?) = r = f-‘ﬂ (20T M 10 m,
L 7(39 m)

25.79: a) V, =E—Ir=12.0V — (-10.0 A) (0.24 Q) =144 V.
b) E=Pt=1Vt=(10 A) (14.4 V) (5) (3600 s) = 2.59 x 10° J.
©) E, =P, t=1rt=(10A) (024 Q) (5) (3600 s) = 4.32 x 10° J.

d) Discharged at 10 A:

o€ p_E-Ir_120V-(10A)(0240)
F+R I 10 A

e) E=Pt=1Vt=(10A)(9.6V)(5) (3600s)=1.73x10° J.
f) Since the current through the internal resistance is the same as before, there is the
same energy dissipated as in (c): E, =4.32x10 J.

g) The energy originally supplied went into the battery and some was also lost over
the internal resistance. So the stored energy was less than was needed to charge it. Then
when discharging, even more energy is lost over the internal resistance, and what is left is
dissipated over the external resistor.

=0.96 Q.

diss



25.80: a) V, =E—Ir=120V —(-=30A) (024 Q) =192 V.
b) E=Pt=1Vt=(30A)(19.2 V) (1.7) (3600 s) = 3.53x 10° J.
) E, =P, t=1"Rt=30A) (024 Q) (1.7) (3600 s) =1.32 x 10° .

d) Discharged at 30 A:

& R E-1Ir _ 120V -(30 A) (0.24 Q)
r+R 1 30A
e) E=Pt=1’Rt=30A) (0.16 Q) (1.7) (3600) = 8.81x 10° J.
f) Since the current through the internal resistance is the same as before, there is the

same energy dissipated as in (c): £, =1.32x10°J.

g) Again, the energy originally supplied went into the battery and some was also lost
over the internal resistance. So the stored energy was less than was needed to charge it.
Then when discharging, even more energy is lost over the internal resistance, and what is
left is dissipated over the external resistor. This time, at a higher current, much more
energy is lost over the internal resistance.

=0.16 Q.

diss

p\dT) T "
b) n=-aT=-(-5x10" (K)™") (293 K) =0.15.

25.81: a) a:l(@j=—£:MTT:@:>1H(T‘”)=1H(p)3p: a
p

]f’n —Sa=p" =(3.5%x10"° Q-m) (293 K)""* =8.0x10° Q-m-K"".

p:

8.0x10°
(77 K)O.IS

-5
T=-3000C=573K: p= o210 _35%10°Q-m.
(573K)"

c) T=-196°C=77K:p =43x107 Q-m.

25.82: a) E=IR+ IR, =200V =1(1.0Q)+V =2 =1 [exp(eV/kT) - 1]+ V.
b) I, =1.50x10" A, T =293K = 1333 =exp[39.6 V — 667] + 667 V.

Trial and error shows that the right-hand side (rhs) above, for specific V values, equals
1333 V, when V' =0.179 V. The current then is just

I=1 exp[39.6V —1]1=(1.5x10" A) exp[39.6(0.179) —1]=1.80 A.



L

pdx_ po expl— x/L] dx :Rz%jexp[—x/L] dx

25.83: a) R :%: dR =

A A o
L _ V. V,A
= R=P [ Lexp[-x/L]|: == (1—e Yy T="0 =08
A A R plLl-¢)
by Ey=_ - OUR __ 0 (Iple™™) _Ipe™ Ve
ox ox ox A A L(l —e’! )
—x/L -1
e V. -V,e
) V(x)=V,——+C=>V(0)=V,=—2—+C=>C=—C—
(1-e) (1-¢e) Ll-¢e7)
—x/L -1
e —e
= V(x) = I/O (—71)
(I-e7)
d) Graphs of resistivity, electric field and potential from x =0 to L.
1.00 L
.80 \\
- . 1.20
~ ) ~
Resistivity 060 L Electric field 050 N
(rp) 0.40 — (Vo/Ly ¥ ~—
0.20 0.40
0.00 ; 0.00
0.00 0.20 040 0.60 0.80 1.00 0.00 (.20 0.40 0.60 0.80 1.00
x(L) x{(L)
1.00
(.80 AN
Potential 0-60
Y0 a0 \\
0.20
.00 H
0.00 0.20 0.40 0.60 0.80 1.00
x (L)

25.84: a) [ =

r+R
1€ 1
= I Pmax: 57 = E Ishort circuit *

b) For the maximum power output of (a), / =

2 2
Then, P:IZR:(EJ r:(c"—

2r 4r "

=>P=E-I'r= Ccll_f =& —2Ir =0 for maximum power output.

& 1€

r+R 2r

=——=+R=2r=>R=r.



Capitulo 26



-1
26.1: a) R, = 1) cnsa
32 20
Vo240V
b) I=——= =195 A
R, 123Q
Vo240V Vo240V
)lpg=—="—=T5A; 1, =—="—"—=12A.
Msza R 32Q 027 R 200
1 1) _(R+R) RR
26.2: Req - (— +—] = (g] = Req — 1°%2 .
R, R, RR, R +R,
=R, =R &, <R and R_ =R, R <R,.
! R1+R2 1 R1+R2

26.3: For resistors in series, the currents are the same and the voltages add.  a) true.

b) false. c¢) P=I’R. isame, R different so P different; false. d) true. e) V=IR. I
same, R different; false. f) Potential drops as move through each resistor in the
direction of the current; false. g) Potential drops as move through each resistor in the
direction of the current, so V, > V_; false. h) true.

26.4: a) False, current divides at junction a.
b) True by charge conservation.

c) True. VIZVZ,SOIOC%

d) False. P=1IVJV,=V,,butl #1,,s0 K # P,

e) False. P=1V =% Since R, >R, P, < P.

f) True. Potential is independent of path.

g) True. Charges lose potential energy (as heat) in R,.

h) False. See answer to (g).
1) False. They are at the same potential.



1 1 1
+ +

240 1.6Q 48Q

b)l,,=¢/R,,=(28V)/(24Q)=11.6TA;I,,=¢/R ,=(28V)/1.6Q)=17.5A,
Is=¢/R,,=(28V)/(4.8Q)=583A.

o) 1,,=¢R,, =28V)/(0.8Q)=35A.

d) When in parallel, all resistors have the same potential difference over them, so here
all have V=28 V.

e) P, =I"R,, =(11.67A)’(24Q)=327W; P, =I'R ,=(175A)’ (1.6 Q) =
490 W; P, =1"R,, =(5.83A)*(4.8Q) =163 W.

f) For resistors in parallel, the most power is dissipated through the resistor with the
2

) . V )
least resistance since P=I°R = ?, with V' = constant.

-1
26.5: a) R, =( ] =0.80Q.

total total

26.6: a) R, =X R =24Q+1.6Q0+480Q=88Q.

b) The current in each resistor is the same and is / = & BV =3.18 A.

R 88Q

eq
c) The current through the battery equals the current of (b), 3.18 A.
d) V,,=1IR,, =3.18A)24Q)=764V;V,,=1IR  =3.18 A)(1.6 Q) =

500V, V,, =IR,, =(3.18A)(4.8QQ) =153 V.

e) P,=I'R,,=(3.18A)Y(24Q0)=243W;P,=I'R ,=(3.18A)(1.6Q)=
162 W; P, =I’R,, =(3.18 A)*(4.8Q)=48.5W.

f) For resistors in series, the most power is dissipated by the resistor with the greatest
resistance since P = IR with I constant.

2

26.7: a) P= % =V =+ PR = /(5.0 W)(15,000 Q) =274 V.

2 2
b) p:V_:w:1,6w
R 9,000Q



1 -1
26.8: R, = ! + ! + ! + ! =5.00Q.
a 3.00Q 6.00Q 12.0Q 4.00Q

e/R = (6.00 V)/(5.00 Q) =12.0 A
12

I =—120 3.00 A 1, = ———(12.0) = 9.00 A;
2 12 (12.0) = 12 (12.0)=

I,=——(12.0)=8.00A; I, =———(12.0) =4.00 A .
’ 3+6( ) 6 3+6( )

t()tal total

-1
26.9: R = ! + ! ~3.000.
T 13.00Q+1.00Q 5.000Q+7.00Q
It()tal :8/ total (480V)/(3 00 Q)_160A
15:17:ﬁ(160) 400 A1, =1, :4&(160)_120/\

26.10: a) The three resistors R,, R, and R, are in parallel, so:

-1 -1
Ry, = L*'L"‘L = ! + ! + ! =0.99Q
R, R, R, 8200 1500 4500
=R, =R +R,;,=350Q+099Q=4490Q.

) =2 =00V 34 A v 2 IR =(134A)(3.50Q) = 4.69 V.
R, 4490

¢q

V
SV =L Ry, =(134A) (0.990) =133V [, = 2 15V 165 5

R, 8200

v v
I, =2 = L33V _ 0887 A and I, =—2 = L33V _ 0296 a.
R, 150Q R, 4500




26.11: Using the same circuit as in Problem 27.10, with all resistances the same:

-1 -1
R,=R+Ry =R+ i+i+L =450Q+ 3 =6.00Q.
R, R, R, 450 Q
a) 1= =200V soar=1,=1,=11 -0500A.
R, 6.000Q 3
1

b) P =1I'R =(1.50 A)*(450Q)=10.13W, P, =P, = P, = h=1125W.

c) Ifthere is a break at R,, then the equivalent resistance increases:

-1 -1
R, =R +Ry; =R + L+L =4.50Q+ 2 =6.75Q.
! R 450 Q

2 3

And so:

e 900V 1 ia et :%11 =0.667 A.

1=

R 6750

€q

d) P =1"R =(133A)4.50Q)=796W, P, =P, =ip1 =1.99 W.

e) So R, and R, are brighter than before, while R, is fainter. The amount of current

flow is all that determines the power output of these bulbs since their resistances are
equal.

26.12: From Ohm’s law, the voltage drop across the 6.00 Q resistor is V= IR =

(4.00 A)(6.00 Q) =24.0 V. The voltage drop across the 8.00 Q resistor is the same,
since these two resistors are wired in parallel. The current through the 8.00 Q resistor is
then 7 =V/R =24.0 V/8.00 Q =3.00 A. The current through the 25.0 Q resistor is the
sum of these two currents: 7.00 A. The voltage drop across the 25.0 Q resistor is V= IR

=(7.00 A)(25.0 Q) =175V, and total voltage drop across the top branch of the circuit is
175 +24.0 = 199 V, which is also the voltage drop across the 20.0 Q resistor. The

current through the 20.0 Q resistor is then / =V/R =199 V/20Q=9.95 A.

26.13: Current through 2.00-Q resistor is 6.00 A. Current through 1.00-€2 resistor also
is

6.00 A and the voltage is 6.00 V. Voltage across the 6.00-Q2 resistoris 12.0 V+ 6.0 V=
18.0 V. Current through the 6.00-Q resistor is (18.0V)/(6.00Q2) =3.00 A. The battery
voltage is 18.0 V.



26.14: a) The filaments must be connected such that the current can flow through each
separately, and also through both in parallel, yielding three possible current flows. The
parallel situation always has less resistance than any of the individual members, so it will
give the highest power output of 180 W, while the other two must give power outputs of
60 W and

120 W.

2 2 2 2
sow=""=r =129V 5400 and 120w=""5r =420V _15q
R 60 W R, 120 W

2 120V} (120 V)

Check for parallel: P = =180 W.

&+ T Gletaia)” 80 Q
b) If R, burns out, the 120 W setting stays the same, the 60 W setting does not work
and the 180 W setting goes to 120 W: brightnesses of zero, medium and medium.
c) If R, burns out, the 60 W setting stays the same, the 120 W setting does not work,
and the 180 W setting is now 60 W: brightnesses of low, zero and low.

e 120V

R (400 Q2 +800 Q)
b) Py, =1°R=(0.100 A)*(400 Q) = 4.0 W; P, = I’R = (0.100 A)?(800 Q) =

BOW=P, =4W+8W=12W.

c) When in parallel, the equivalent resistance becomes:

26.15:a) [ = =0.100 A.

-1
Ro=| s L) car0=1, =2 =120V _ga9a.
4 4000 800Q R 267 Q

eq
Ly = %(0.449 A)=0.30 A; Iy, = ﬁ(OA@ A)=0.150 A.
d) Py, =1"R=(0.30 A)’(400 Q) =36 W; B, =’R=(0.15A)*(800Q) =18 W
=P, =36 W+18W=54W.
e) The 800 €2 resistor is brighter when the resistors are in series, and the 400 Q is
brighter when in parallel. The greatest total light output is when they are in parallel.



V: (120 V) V: o (120 V)
26.16: a) R60W = ? = W =240 Q, RZOOW = ? = W =72 Q.
24
= Tyw = Loy = — 0V 0769 A

VTR T (2400Q+72Q)
b)
P, =I’R=(0.769 A)*(240 Q) =142 W; P,,,, = 'R =(0.769 A)*(72 Q) =42.6 W.
c) The 60 W bulb burns out quickly because the power it delivers (142 W) is 2.4 times
its rated value.

26.17:
10.0 Q 10.0 Q 2000
AVAVAVA i VAVAVA ANAN
500

1000 100 Q 2000

ANNNN—ANAN = N = — AN —
5.00 8 ({002
5.00 500

AN AN avava

300V-71(200Q+5.0Q+5.00Q)=0;, 7=1.00A
For the 20.0- Q2 resistor thermal energy is generated at the rate
P=I’R=20.0W.
O = Pt and Q = mcAT gives
. mcAT (0.100 kg) (4190 J/kg - K) (40.0 C°)
P 20.0 W

=1.01x10%s




26.18: a) P =1I]R,
20 W =(2A)’R, > R, =5.00Q
R, and 10 Q in parallel:
10Q)],, =(5Q) (2 A)
I,=1A
So 1, =0.50 A. R, and R, are in parallel, so
(0.50 A)R, =(2A) (5
R, =20.0Q
b) e=V,=(2A)(5Q)=10.0V
c) From(a): 7/, =0.500 A, /,, =1.00 A
d) P, =20.0 W (given)
P, =i; R, =(0.50 A)*(20 Q) =5.00 W
P, =iy R,=>1.0A)Y°(100Q)=10.0 W

Proi =20W+5W+10W =350W
By =1=(3.50 A) (10.0 V) =35.0 W
Presist = Boanery, Which agrees with the conservation of energy.

26.19: a) /, =6.00 A—4.00 A =2.00 A.
b) Using a Kirchhoff loop around the outside of the circuit:

28.0 V—(6.00 A) (3.00 Q)— (2.00 A) R=0= R = 5.00 Q.

c) Using a counterclockwise loop in the bottom half of the circuit:
e€—(6.00A) (3.00Q)—-(4.00A) (6.000Q)=0=>¢e=42.0 V.

d) Ifthe circuit is broken at point x, then the current in the 28 V battery is:
_ze_ BOV. 5504
2R 3.000Q+5.00Q

26.20: From the given currents in the diagram, the current through the middle branch
of the circuit must be 1.00 A (the difference between 2.00 A and 1.00 A). We now use
Kirchoff’s Rules, passing counterclockwise around the top loop:
20.0 V - (1.00 A) (6.00 Q+1.00 Q)+(1.00 A)(4.00 Q2 +1.00 Q)—¢, =0=>¢, =18.0 V.
Now traveling around the external loop of the circuit:
20.0 V—(1.00 A)(6.00Q2+1.00Q)—(2.00A)(1.00Q+2.00Q)-¢,=0=¢,=7.0V.
And

V,, =—(1.00 A)(4.00 Q+1.00Q)+18.0 V=+13.0 V,s0 V,, =—13.0 V.



26.21: a) The sum of the currents that enter the junction below the 3 - Q resistor equals
3.00 A+5.00 A=28.00 A.
b) Using the lower left loop:
g, —(4.00 Q)(3.00 A)—(3.00 ©2)(8.00 A)=0

=¢ =360V.

Using the lower right loop:
&, —(6.00 Q)(5.00 A)—(3.00 Q)(8.00 A)=0

=¢,=54.0V.
c¢) Using the top loop:

18.0V

540V -R(2.00A)-36.0V=0=R= =9.00 Q.
2.00 A

26.22: From the circuit in Fig. 26.42, we use Kirchhoff’s Rules to find the currents, /|
to the left through the 10 V battery, /7, to the right through 5 V battery, and 7, to the right
through the 10 Q resistor:

Upper loop:
10.0 V—(2.00 Q+3.00 Q)7, —(1.00 Q + 4.00 Q)7, —5.00 V = 0

=35.0V-(5.00Q), - (5.00Q)[,=0= 1, + 1, =1.00 A.
Lower loop:5.00 V +(1.00 Q +4.00 Q)1, —(10.0 Q)I, =0
=5.00V+(5.00Q), -(10.0Q)[, =0=1, -2, =—1.00 A
Along with 7, =1, +1,, we can solve for the three currents and find:
1, =0.800 A, 7, =0.200 A, I, = 0.600 A.
b) ¥, =—(0.200 A)(4.00 2)—(0.800 A)(3.00 Q)=-3.20 V.

26.23: After reversing the polarity of the 10-V battery in the circuit of Fig. 26.42, the
only change in the equations from Problem 26.22 is the upper loop where the 10 V
battery is:
Upper loop:—10.0 V — (2.00 Q +3.00 Q)I, —(1.00 Q +4.00 Q)I, —5.00 V =0
=150V -(5.00Q)1, —(5.00Q)1, =0 =1, + I, =—-3.00 A.
Lower loop:5.00 V +(1.00 Q+4.00 Q)I, —(10.0 Q)I, =0
= 5.00 V+(5.00Q)7, —(10.0 Q)I, =0 = I, - 2I, =—1.00 A.
Along with 1, =1, + I, we can solve for the three currents and find:
I, =-160A,1,=-140 A, I, =-0.200 A.
b) ¥, =+(1.40 A)(4.00 Q)+ (1.60 A)(3.00Q)=10.4 V.



26.24: After switching the 5-V battery for a 20-V battery in the circuit of Fig. 26.42,
there is a change in the equations from Problem 26.22 in both the upper and lower loops:

Upper loop: 10.0 V —(2.00 Q +3.00 Q)7, —(1.00 Q +4.00 Q)I, —20.00 V =0
= -10.0 V—(5.00Q)1, —(5.00Q)[, =0 =1, + [, =—2.00 A.
Lower loop: 20.00 V +(1.00 Q + 4.00 Q)7, — (10.0 Q)I, =0
=20.00 V+(5.00 Q)1, —(10.0 Q)I, =0= I, -2, =—4.00 A.
Along with 1, =1, + I, we can solve for the three currents and find:
I, =-04A,1,=-1.6A,1,=+12 A,
b) L(4Q)-1,3Q)=(1.6A)4Q)+(04A)3Q)=7.6V

26.25: The total power dissipated in the four resistors of Fig. 26.10a is given by the sum
of:

P =I"R,=(05A)F(2Q)=05W,L=1"R, =(05A)(3Q)=0.75W,
P =I'R,=(05A)(4Q)=1W,R=I"R, =(0.5A)(7Q)=18W.
=>P . =B+P+P+P=4W.

total

26.26: a) Ifthe 12-V battery is removed and then replaced with the opposite polarity,
the current will flow in the clockwise direction, with magnitude;
I e :12V+4V:1A
>R 16 Q
b) V,=—(R,+R ) +e,=—(4Q+7Q)(1A)+4V=-TV.




26.27: a) Since all the external resistors are equal, the current must be symmetrical
through them. That is, there can be no current through the resistor R for that would imply
an imbalance
in currents through the other resistors.

With no current going through R, the circuit is like that shown below at right.

1Q
I=635A |
Tiav
I=65A
14 10
So the equivalent resistance of the circuit is
-1
o] s1a=1,, =Y S13a
20 20 1Q
1
= Lty = Elmmz =6.5 A, and no current passes through R.

b) As worked out above, R, =1Q.

c) V, =0, since no current flows.
d) R does not show up since no current flows through it.



26.28: Given that the full-scale deflection current is 500 #A and the coil resistance is
25.0Q:
a) For a 20-mA ammeter, the two resistances are in parallel:
V.=V, = IR =IR = (500x10° A)(25.0Q)=(20x10" A—500x10" AR,
=R =0.641Q

R,=25

Y A 500 A

]
L 1

R

A

20 mA

s

b) For a 500-m voltmeter, the resistances are in series:

a

V,=I(R +R)=R, :%—RE

-3
R =200V hs00-9750
500x10° A
]
|
R.=25Q
R; A 500 pA

a Vp=500mV b



26.29: The full-scale deflection current is 0.0224 A, and we wish a full-scale reading for
20.0 A.
(0.0224 A)(9.36 Q@+ R)=(20.0 A —0.0224 A)(0.0250 Q)

_04PQA G ca-190.
0.0224 A
]
| |
R;=9.36Q
|:|R A0.0224 A
| — <
R,=0.0250Q 2004
26.30: a)[ = —— = 0V =0.208 A
R,, (823Q+425Q)
=>V=c-Ir=9V-(0.208 A)(8.23Q)=883 Q.
b) V=e-Ir=¢- o _ R d ST
r+R, r+R, (r/R,)+1 "R, V
Now if V' is to be off by no more than 4% it requires: RL = 896_04 —1=0.0416.
. .

26.31: a) When the galvanometer reading is zero:

R
&, =IR, ande = IR, = ¢, zelR—"bzel%
ab

b) The value of the galvanometer’s resistance is unimportant since no current flows
through it.

0.365m

o) &, =61§=(9.15 V)1 o =334V

00 m



26.32: Two voltmeters with different resistances are connected in series across a 120-V

line. So the current flowing is / = 120 \2 =1.20x10"> A. But the current

R,., 100x10°Q
required for full-scale deflection for each voltmeter is:

150V 150V 3
I, =———=0.0150 Aand /, =——=1.67x10" A.
40K 10,000 Q B0 90,000 Q
So the readings are:
-3 -3
Vi =150 V[ 20N A0 15 v oand v, =150 v 12210 AT 48y,
0.0150 A 1.67x107 A

26.33: A half-scale reading occurs with R =600 €. So the current through the
galvanometer is half the full-scale current.

total

-3
=e=IR :>1.50V=(%J(15.09+6009+R3):»RS =218Q.

26.34: a) When the wires are shorted, the full-scale deflection current is obtained:
e=1IR,, =152V =(250x10" A)65.0 Q+R)= R =543 Q.

total

b) Ifthe resistance R, =200Q:7 = r L2V =1.88 mA.
“ R, 650Q+543Q+R.
0 I = £ _ 1.52V :>Rr:1'52V—608Q.
R,., 650Q+543Q+R. ’ .
So:7, =1, =625x107 A= R =——2 ¥ _6080=18240Q.
4 - 6.25x10" A
[ =21,,=125x10" AR =—22Y 6080 =608Q
27 O 1.25x107 A
I, zélﬁd =1.875x107° A= R, ZLV_}—6OSQ=2O3 Q.
S 47 1.875x107 A

26.35: [RC]= E%} = [% = {Q%J =[]



26.36: An uncharged capacitor is placed into a circuit.
a) At the instant the circuit is completed, there is no voltage over the capacitor,
since it has no charge stored.
b) All the voltage of the battery is lost over the resistor, so V, =& =125 V.

c) There is no charge on the capacitor.
e 125V

d) The current through the resistor is i = = =0.0167 A.
7500 Q

total
e) After a long time has passed:
The voltage over the capacitor balances the emf: V, =125 V.

The voltage over the resister is zero.
The capacitor’s charge is ¢ = Cv, =(4.60x107° F) (125 V) =5.75x10"* C.
The current in the circuit is zero.

q 6.55x107° C
RC  (1.28x10° Q) (4.55x10™" F)
by 7= RC=(1.28x10°Q) (4.55x10"° F) =5.82x107*s.

2637:  a) i= =1.12x107* A.

26.38:
_t/RC T 4.00s

V=ye =C= = 3 28.49X10_7 F.
Rln(v,/v) (3.40x10° Q) (In (12/3))




26.39: a) The time constant RC =(0.895x10° Q) (12.4x10° F)=11.1s.So at:

t=0s:g=Ce(l1-e""")=0.

t=5s:g=Ce(1—e""")=(12.4x10° F) (60.0 V) (1 — e /1119
=2.70x107* C.

t=10s:q=Ce(1-e""*)=(12.4x107° F) (60.0 V) (1—¢ 1?0119y
=442x107* C.

t=20s:q=Ce(l-e"""*)=(12.4x107° F) (60.0 V) (1 — ¢ 00119y
=6.21x10"*C.

1=100s:q=Ce(l—e""*)=(12.4x107° F) (60.0 V) (1 — ¢ 1*?/1*))

=7.44x107* C.

. . . e
b) The current at time ¢ is given by: i = 2¢ 'R So at :

1=0s:i =Loysef°““ =6.70x107 A.
8.95x10° Q
t=5s:i =Lovse*5““ =427x107 A.
8.95x10° Q
t=105:i:L0\2e_10/“'1 =227x107° A.
8.95x10° Q
t=2OS:i=LOVSe’20/“'1 =1.11x107° A.
8.95x10° Q
1=100 s:izLOVSe_IOO/”'I =8.20x107° A.
8.95x10° Q
c) Charge against time:
6.00
sae | T
2.00 t
/‘
()'08.(10 4.00 8.00 12.00 16.00 2();(1()

t (s}

Current against time:



26.40: a) Originally, 7 = RC =0.870 s. The combined capacitance of the two identical

capacitors in series is given by

1 1 1 2 C
=t =G =
¢, C C C 2
The new time constant is thus R (§) =22 = 0.435 s.

b) With the two capacitors in parallel the new total capacitane is simply 2 C. Thus the
time constant is R(2C) =2(0.870s)=1.74s.

26.41: e—V, -V, =0
¢ =120V, V, = IR = (0.900 A) (80.0Q) =72V, so V. =48 V
0 =CV =(4.00x 10°F) (48V) = 192 4xC)

26.42: a) Q=CV =(590x10"° F)(28.0 V) =1.65x10"* C.
b) g=0(-e"" )yt oL g ~L
) q=0( ) 0 Cin(—4/0)
—-3x107s 4
(5.90x107° F) (In(1 —110/165))
c) Ifthe charge is to be 99% of final value:

g:(l—e‘”“):t:—RC In(1-g/0)

= — (463 Q) (5.90x10™° F) In(0.01) = 0.0126 .

After t=3x10"s:R= 63 Q.

26.43: a) The time constant RC = (980 Q) (1.50 x 10~ F)=0.0147 s.

t=0.05s:g=Ce(1—e""*)=(1.50x107° F) (18.0 V) (1 —e %97y =133 %10 C.

b) izie—t/RC :Me—o,lo/o.om —930x107 A,
R 980 Q

=V, =IR=(9.30x107 A)(980Q)=9.11Vand V. =18.0 V-9.11V =889 V.
¢) Once the switch is thrown, V, =V, =8.89 V.
d) Aftert=0.01s:q=0,e""* =(1.50x107 F) (8.89 V)e """ =6.75x107° C.



41
26.44: a) [ = 5 = 22(())\\7 =17.1 A. So we need at lest 14-gauge wire (good up to 18

A). 12 gauge is ok (good up to 25 A).

2 2 2
b PV g V@0V
R P 4100 W

14 Q

c) Atll¢/kWhr = in1hour,cost =(11¢/kWhr) (1 hr)(4.1 kW) =45¢.

26.45: We want to trip a 20-A circuit breaker:

1—1500W+ P :>WithP:900W:I:1500W+9OOW20A
120V 120V 120V 120V

26.46: The current gets split evenly between all the parallel bulbs. A single bulb will

draw [ = E = M =0.75 A = Number of bulbs < 20 A
0.75A

Vo120V
26 bulbs safely.

=26.7. So you can attach

2647 2) 1=~ =120V _0A= P11 =(60A)(120 V)= 720 W.
R 200

b) At T=280°C, R=R,(1+aAT)=20Q (1+(2.8x107 (C°)"' (257°C))

=344 Q.
V 120V

R 344 A

=349A = P=(3.49 A) (120 V) =419 W.



26.48: a)

—
L
RZ
| —
L
R;
R,
—
L]

b) R

_( 1 +1]’1_ Ry(R, +R,)

“ \R+R, R,) R +R +R,

IfR, =R = R(R +R, +R)=R,(R +R,)=> R, =R, (R +R)/R,.

R, R,
Ry
—
L

26.49: a) We wanted a total resistance of 400 Q and power of 2.4 W froma
combination of individual resistors of 400 Q and 1.2 W power - rating.

b) The current is given by: I = VPIR = \/2.4 W /400 € =0.077 A. In each leg half the
current flows, so the power in each resistor in each resistor in each combination is the
same: P=(I/2)*R=(0.039 A)*(400 Q)=0.6 W.



26.50: a) First realize that the Cu and Ni cables are in parallel.

1 ma’ N n(b® —a’)

Rcable pNiL pCuL

71'(612 b2—a2j
==|—+
L\ py Pcu

7 [ (0.050m)*  (0.100 m)® ~(0.050 m)Z}

So:

" 20m | 7.8x10° Om 1.72x10°° Om

Rey. =13.6x10° Q=13.6 4Q

L L
b) R= —= —_—
) Pesr 1 Pett b’

_w’ R w(0.10m)* (13.6x107° Q)

Pt I 0m
=2.14x10"° Om




26.51: Let R =1.00 Q, the resistance of one wire. Each half of the wire has R, = R/2.

Rh
Ry, AAAN Ry, Ry, Ry R,
- - = Ry W— = — VN —AAA S AfNAA
AAAN

The equivalent resistance is R, + R,/ 2 + R, =5R,/2=3(0.500 Q) 1.25Q

26.52: a) The equivalent resistance of the two bulbs is 1.0 2. So the current is:

v 80V
1.0Q+0.80 Q

I = =4.4 A = the current through each bulbis 2.2 A.

R

total

V. =c—Ir=80V—(44A)(080Q)=44V=P,, =IV=(22A)(44V)=99W

b) If one bulb burns out, then

vV 80V
R,, 20Q+0.80Q

=29A=P=I"R=(29A) 2.0Q)=163W,

total

so the remaining bulb is brighter than before.

26.53: The maximum allowed power is when the total current is the maximum allowed
value of / =+/P/R = \/36 W /2.4 Q =3.9 A. Then half the current flows through the
parallel resistors and the maximum power is:

P =(/2°R+(/2’R+I’R :%IZR :%(3.9 A (24Q)=54W.

max



-1
26.54: a) R,,(8,16,16) = L S Yo
80 16Q 16Q
-1
1 1
R (9,18)=| —+——| =60Q.
9Q 18Q

So the circuit is equivalent to the one shown below. Thus:

-1
R, = L, 1 =8.0Q
T 6Q+6Q 200+40

L1 L1
4Q 20Q
6Q 6Q

L L1

b) If the current through the 8- Q resistor is 2.4 A, then the top branch current is
1(8,16,16)=2.4 A +52.4 A +12.4 A =4.8 A.But the bottom branch current is twice

that of the top, since its resistance is half. Therefore the potential of point a relative to
point xisV, == IR, (9,18) =—(9.6 A) (6.00 Q) =—-58 V.



26.55: Circuit (a)
The 75.0 Q and 40.0 Q resistors are in parallel and have equivalent resistance 26.0¢

The 25.0 Q and 50.0 Q resistors are in parallel and have equivalent resistance16.67

The network is equivalent to

b
100.0Q

b

100.0€Q

a

100.0Q

AN

5000 - 5000
/ 23050
42760

26.09Q 16.67

T + so R, =18.7Q
R, 100.0Q 23.05Q B

Circuit (b)

The

30.0 Q and 45.0 Q resistors are in parallel and have equivalent resistance 18.0 Q2.

The network is equivalent to

a b a b
7.00Q 1006 7000 1000

60.0Q

[S]
st
it
™,
[~
(8]
feoe]
o
[y
-

1 1 1

= +
R 10,0 303Q

€q




26.56: Recognize that the ohmmeter measures the equivalent parallel resistance, not just

X.
1 1 1 1 1
=—+ + +
2020 X 115Q 130Q2 85Q
X =46.8Q

26.57: Topleftloop: 12-5(1, -1;)-1,=0=12-61, + 51, =0.

Top right loop:9 - 8(1, +1,) -1/, =0=9-91, =81, =0.
Bottom loop: 12-10/,-9+1/,-11,=0=3+1, -1, 10/, =0.

Solving these three equations for the currents yields:

1,=0.848 4,1, =2.14 A,and I, = 0.171 A.

26.58: Outside loop:24 - 7(1.8) -=3(1.8-1,)=0=1_=-2.0A.
Right loop: &-7(1.8)-2(-2.0)=0=¢=8.6V.

26.59: Leftloop: 20-14-271, +4(/, - 1,)=0=6-6/, + 41, =0.
Right loop:36 — 51, —4(1, - 1,)=0=36+41, - 91, =0.

Solving these two equations for the currents yields:

1,=521A=1,,,1,=632A=1,,andI,, =1, -1, =1.11 A.



26.60: a) Using the currents as defined on the circuit diagram below we obtain three
equations to solve for the currents:

121
I 1 l
1

16
| 1Q

I
L-1, -1 +1, T

Leftloop: 14-1,-2(/,-1,)=0
=31, -21,=14.

Toploop: —-2(/-1)+,+1 =0
=-21+31,+1,=0.

Bottom loop:—(/ -1, +1,)+2({, - 1,) -1, =0
=-1+31,-41,=0.

28

I

1Q

Solving these equations for the currents we find:

I=1

battery

=10.0A;/, = 1Rl =6.0A;1, = 1R3 =2.0A.
So the other currents are:

Ly =1-1,=40A;1, =1,~1,=40A; 1, =1~1,+1,=6.0A.

)R, =L=29Y—140Q.

eq 1 10.0 A




26.61: a) Going around the complete loop, we have:

D e-DIR=120V-80V-109.00Q)=0=1=044A.
=V,=>e-Y IR=120V-100V-(044A) 2Q+1Q+1Q)
=+0.22V.

b) If now the points a and b are connected by a wire, the circuit becomes equivalent to
the diagram shown below. The two loop equations for currents are (leaving out
the units):

12-10-41, +41,=0=>1,=1,-05
and

10 -8 —41, =51, =2 — 4L, =5, + 1,)=0
=2 (41, -2) =51, =51, +2.5=0
=1, =0.464 A.

Thus the current through the 12-V battery is 0.464 A.

T
4Q
Il

4Q

5Q



26.62: a) First do series/parallel reduction:

AAAAA
vvvvv

A4 p—ew————, TS5V

a d

Now apply Kirchhoff’s laws and solve for &.

AV, =0:=(20 Q)2 A)=5V—(20 Q)1, =0
L,=-225A
L+1,=2A—>1=2A-(-225A)=425A

AV iera =0:(15Q) (425A)+e-(20Q0) (-225A)=0
e =—109 V; polarity should be reversed.

b) Parallel branch has a 10 Q2 resistance.

AV. =RI=(10Q)(2A)=20V

par

AV _ 20V

Current in upper part: [ =4-=3==2 A

Pt=U—>I*Rt=U
2 2
(E Aj (10Q)t =607

t=135s



26.63:

1,=0.0706 A 200 Q
c AVAVAYA
a
+ +
120V 0 240V
30,0 Q

v 100 Q

100 Q ‘
dJ 4 b

V,+1,(10.0Q)+12.0 V=V,
V.-V, =12706V; V, -V, =V. -V, =127V

26.64: First recognize that if the 40 Q resistor is safe, all the other resistors are also safe.

PR=P—>T*(40Q)=1W
1=0.158A

Now use series / parallel reduction to simplify the circuit. The upper parallel branch is
6.38 Q and the lower one is 25 Q. The series sum is now 126 Q. Ohm’s law gives

£=(126 Q)(0.158 A)=19.9V

26.65: The 20.0-Q2 and 30.0-Q resistors are in parallel and have equivalent resistance
12.0 Q2. The two resistors R are in parallel and have equivalent resistance R/2. The
circuit is equivalent to

5.00 A
< a
éls.o o % 2000 2000V |

R 2

AAAVA—

2.0 Q

F,

el
Z

200V

»

5()() A ‘




o . . . v? .
26.66: For three identical resistors in series, P, = IR If they are now in parallel over the

ve_v:_ o
R, R/3 3R

¢q

same voltage, P, = =9P =9(27 W) =243 W.

26.67: P, =¢’/R so R =¢*/P
P, :82/R2 so R, :82/132

a) When the resistors are connected in parallel to the emf, the voltage across each
resistor is & and the power dissipated by each resistor is the same as if only the one

resistor were connected. P, = P, + P,

b) When the resistors are connected in series the equivalent resistance is
R, =R +R,

£ _ &  _ RA
R+R, &[R+& /P PR+P

ptot =



26.68: a) Ignoring the capacitor for the moment, the equivalent resistance of the two
parallel resistors is

S + b __ 3 ; R, =2.00Q
R, 600Q 3.00Q 6.00Q 1
In the absence of the capacitor, the total current in the circuit (the current through the

8.00 Q resistor) would be

£ IV 4504
R 8.00Q+2.00Q

of which 2/3, or 2.80 A, would go through the 3.00 Q resistor and 1/3, or 1.40 A,
would go through the 6.00 Q2 resistor. Since the current through the capacitor is given by

.V
l=—€t/RC,

R
at the instant # = 0 the circuit behaves as through the capacitor were not present, so the

currents through the various resistors are as calculated above.
b) Once the capacitor is fully charged, no current flows through that part of the circuit.
The 8.00 Q and the 6.00 Q resistors are now in series, and the current through them is

i=¢/R=(42.0 V)/(8.00 Q+6.00 Q) =3.00 A. The voltage drop across both the 6.00 Q
resistor and the capacitor is thus V' =iR = (3.00 A)(6.00 Q) =18.0 V. (There is no
current through the 3.00 Q resistor and so no voltage drop across it.) The change on the
capacitor is

0 =CV =(4.00x10"farad)(18.0 V) = 7.2x10°C

26.69: a) When the switch is open, only the outer resistances have current through them.
So the equivalent resistance of them is:

-1
Ro=|— e L) —4s0a=r=2 2300V g0
4 60Q+3Q 3Q+6Q R 4.50Q

¢q

=V, = (%8.00 Aj (3.00 Q) - (%8.00 Aj (6.00 Q)=-12.0 V.

b) If the switch is closed, the circuit geometry and resistance ratios become identical
to that of Problem 26.60 and the same analysis can be carried out. However, we can also
use symmetry to infer the following:

I =31,5,and [ =11,,. From the left loop as in Problem 26.60:

36 V—@[mjw Q)-L,3Q)=0=1L, =514 A= 1, :%Im =1.71A.

switch

2 5 & 360V

(©) Ty =310t 30 =310 =85TAS R, —— = -=420Q,

battery



26.70:

a) With an open switch: V, = &=18.0V, since equilibrium has been reached.

b) Point “a” is at a higher potential since it is directly connected to the positive
terminal of the battery.

¢) When the switch is closed:

18.0 V =1(6.00 Q+3.00 Q) = I =2.00 A =V, = (2.00 A)(3.00 Q) = 6.00 V.

d) Initially the capacitor’s charges were:

26.71:

Q, =CV =(3.00x10"° F)(18.0 V) =5.40x10"° C.

Q, =CV =(6.00x107° F)(18.0 V) =1.08x10™* C.
After the switch is closed:
0, =CV =(3.00x10° F)(18.0 V—-12.0 V) =1.80x10~° C.
Q, =CV =(6.00x10° F)(18.0 V-6.0 V)=7.20x10" C.
So both capacitors lose 3.60x10~° C.

a) With an open switch:
0, =C.V =(2.00x10™° F)(18.0 V) =3.60x10~ C.

Also, there is a current in the left branch:

= 180V =2.00 A.
6.00 2+3.00 Q

O 3.6x107° C

Vig=—"2t——IR,=""—"——

e “* 6.0x10°F
b) Point “b” is at the higher potential.

c) If the switch is closed:
V, =V, =(2.00 A)(3.00 Q2)=6.00 V.

d) New charges are:
Q, =CV =(3.00x10"° F)(6.0 V) =1.80x10~° C.

Q, =CV =(6.00x107° F)(-12.0 V) =-7.20x 10~ C.

= AQ, =+3.60x10° C—(1.80x10~° C)=+1.80x 10" C.

= AQ, =-3.60x107 C - (-7.20x107 C) =+3.60x 10~ C.
So the total charge flowing through the switch is 5.40 x 10~ C.

So, V

=y, — (2.0 A)Y(6.0Q)=-6.00 V.

i



26.72: The current for full-scale deflection is 0.02 A. From the circuit we can derive
three equations:
(1) (R, + R, + R;)(0.100 A — 0.02 A) = 48.0 ©2(0.02 A)

=R +R, +R,=12.0Q.
(i) (R, +R,)(1.00 A —0.02 A)=(48.0Q2+ R,)(0.02 A)
= R, + R, —0.0204R, =0.980 Q.
(iii) R, (10.0A -0.02A)=(48.0Q+ R, + R;)(0.02 A)
= R, = 0.002R, —0.002R, =0.096 Q.
From (i) and (i) = R, =10.8 Q.
From (ii) and (iii) R, =1.08 Q. Andso = R, =0.12 Q.

26.73: From the 3-V range:

(1.00x 107 A)(40.0Q+ R)=3.00V =R, =2960Q =R, =3000Q.

From the 15-V range:

(1.00x107 A)(40.0Q+R, + R,)=15.0 V=>R, =12000Q =R, =15000 Q.

From the 150-V range:

(1.00x 107 A)(40.0Q+ R, + R, +R,)=150 V= R, =135,000 Q

= Roverall = 150 kQ
-1
26.74: a) R, =100 kQ2 + ! + ! =140 kQ.
1 200 kQ 50 kQ
1= 2A00KV 5 g6x107 A,
140 kQ
1 1Y
=V =] R=(2.86x10"" A + =114.4V.
200k ( )( 200kQ 50 ij

b) If V, =5.00x10° Q, then we carry out the same calculations as above to find
R, =292kQ=1=137x 107 A=V, 0 =263 V.

¢) If V, =oo, then we find R,, =300 kQ = [ =1.33 x 107° A=V, =266 V.

2675 1= 11OV ooy (1OVISOKR
(0kQ + R) (B0kQ + R)

= (68 V)30 kQ + R) = (110 V)30 kQ = R = 18.5 kQ.

68 V.



26.76: a) V =IR+ IR, = R="—R,. The true resistance R is always less than the

reading because in the circuit the ammeter’s resistance causes the current to be less then

it should. Thus the smaller current requires the resistance R to be calculated larger than it
should be.
b) I=f+3=>R= IRVVL’_’V =775 - Now the current measured is greater than that
through the resistor, so R =V /1, is always greater than V/I.
¢) () P=I’R=I*(V/I-R,)=IV-I'R,.

(b): P=V*/R=V({I-V/R,)=IV-V*/R,.

26.77: a) When the bridge is balanced, no current flows through the galvanometer:

P+ X
[,=0=V, =V, = NI, =Pl,, > N—WL*) ___p (N+M)
P+ X+N+M) (P+X+N+M)
MP

= N(P+X)=P(N+M)= NX = PM = X =="-.

v _ (8:500)(33.480)
15.00Q

(b) =1897Q).

26.78: In order for the second galvanometer to give the same full-scale deflection and to
have the same resistance as the first, we need two additional resistances as shown below.
So:

(3.6 uA)(38.0Q2) =(1.496 mA)R, = R, =91.4 mQL.
And for the total resistance to be 65 Q:

-1
65=R, + ! + ! =R, =649 Q.
38.0Q 0.0914 Q
©
R=38.0Q AI=3.6 uA
| —
Rl

R, Al=15mA




26.79: a) [ = oo
(224 O + 589 Q)

=V, =(0.111A)(224 Q) =249 V.

= Voo =(0.111 A)(589 Q) =654 V.
90V
by I= . — and V,,,o = & — IRy,
589 Q + (E + 5550)

=0.11TA.

938V =90y POVIGEIQ) ;
589 Q2+ (1 + pla)

2240

-1
= L+; =211.8Q = R, =3874 QL
R 224 Q)

vV

c) If the voltmeter is connected over the 589 - QO resistor, then

-1
R, =240+ —+—| 7350
3874

589 Q
== 79307\;2 =0.122 A =1, + I, also 38741, = 5891,
., 0.122 A

5800 —

D =0.106 A = Voo = 15590 R=1(0.106 A)(589Q2) =62.4 V.
+ 267

3875

d) No. From the equation in part (b) one can see that any voltmeter with finite

resistance R, placed in parallel with any other resistance will always decrease the
measured voltage.

V: o (120v)?

2 .
2OV _asg0w iy p =Y - LAl i
R 4260 d 2C di C

26.80: a) (1) P, =

120 V
) P =& =(120V
(i) £, ( )4.26Q
b) After alongtime, i=0= P, =0, P. =0, P, =0.

=3380 W.



26.81: a) If'the given capacitor was fully charged for the givenemf, O . =CV =

max

(3.4x107° F)(180 V) =6.12 x 10~ C. Since it has more charge than this after it was

connected, this tells us the capacitor is discharging and so the current must be flowing
toward the negative plate. The capacitor started with more charge than was “allowed” for
the given emf. Let

O(t=0)=0Q, and Q(t =)= Q,.Forallt,0(1)=(Q, ~0Q,)e """ + 0,

We are given Q at some time ¢t = T;Q(t =T) = 8.15x 107*C and from

above O, = 6.12x 107 C. The current /(¢) = 942 = 20 /" At =T, O(T) =
-9, Ye TIRC 4 Q,.So the currentatt =T is I(T) = —_(Q‘;;Q”) (="' = —_(Q(;)C_ 2N

Thus I(T) = BISxI101CHOXI0TC g ag 10 A (toward the negative plate).

(7.25x10°Q)(3.40x107° F)

b) As time goes on, the capacitor will discharge to 6.12x10™* C as calculated
above.

26.82: For a charged capacitor, connected into a circuit:

I, = g—g = Q, = I,RC = (0.620 A)(5.88 kQ)(8.55x107"° F)=3.12x10° C.

2683 e=IR=>R=S=—1V __160x10°Q=
I, 65x10°A
c=L- 825  _36.10°E
R 1.69x10°Q

2 2
26.84: a) U = 9 __(0.0081C) =7.101J.

2C  2(4.62x10° F)

2 2
b) B =IR= O g (0.0081C) ——=3616 W.
RC (850 Q)(4.62x10°° F)
2
c) WhenU=lU0 _19
2 22C

O, (O o (O 1,
:Q_\/E:P (ch R Z(RC] R 2PO 1808 W.



26.85: a) We will say that a capacitor is discharged if its charge is less than that
of one electron, The time this takes is then given by:

q=0e"" =t=RCIn(Q,/e)

=1=(6.7x10° Q)9.2x107 F)In (7.0x10° C/1.6 x10™ C) =19.36 s,
or 31.4 time constants.

b) Asshownin(a), #=11n(Q,/q), and so the number of time constants
required to discharge the capacitor is independent of R and C, and depends only on
the initial charge.

26.86: a) The equivalent capacitance and time constant are:

w0 et Ceq = (6.00 Q)(2.00 £F) =1.20x 107 5.

-1
:L+L =200uF=7=R
3uF 6 uF

b) After 1=1.20x107s,g=0,(1—e ") =C, e(1—e ™)
g _Cat o /0y (220 HE)12 V)

i(l
3.0 uF

1-¢')=5.06V.
C (I-e)

0 0
© 0 2 ©
b) Ey=[Pdt=[iRdr="" e/ di=Lec.
0 0 R 0 2
2 2
C) =Q_0=V C=182C:Etoml—ER'
2C 2 2

d) One half of the energy is stored in the capacitor, regardless of the sizes of the
resistor.

2688 = Qe poppo Qo e g Q0 Te—zr/xc it
RC RC? RC? 4

_ 0, RC_Q) _
RC? 2 2C

0



26.89: a) Using Kirchhoff’s Rules on the circuit we find:
Left loop: 92 -1401, — 210/, + 55=0=147 -140/, — 210/, = 0.

Right loop: 57 =351, - 2101, +55=0=112-210/, - 35/, = 0.
Currents: =1,-1,+1,=0.
Solving for the three currents we have:
1, =0.300 A, 1, =0.500 A, I, =0.200 A.
b) Leaving only the 92-V battery in the circuit:
Left loop: 92 —-1407, — 2107, =0.
Right loop: —-3571,-2107, = 0.
Currents: I,-1,+1,=0.

Solving for the three currents:
1,=0541A, 1,=0.077 A, I, =-0.464 A.

c) Leaving only the 57-V battery in the circuit:

Left loop: 1407, +2107, = 0.
Right loop: 57 -357, — 210/, =0.
Currents: I,-1,+1,=0.
Solving for the three currents:
1, =-0.287 A, 1, =0.192 A, I, =0.480 A.

d) Leaving only the 55-V battery in the circuit:
Left loop: 5514017, - 2107, =0.

Right loop: 55-351, -2107, =0.

Currents: I,-1,+1,=0.
Solving for the three currents:

1, =0.046 A, 1, =0231A, I,=0.185A.

e) If we sum the currents from the previous three parts we find:
1, =0.300 A, 1, =0.500 A, I, =0.200 A, just as in part (a).

f) Changing the 57-V battery for an 80-V battery just affects the calculation in part
(c). It changes to:

Left loop: 1407, + 2107, = 0.
Right loop: 80 -357, — 210/, =0.
Currents: I, -1,+1,=0.

Solving for the three currents:
I, =-0403A, [,=0269A, I,=0.672A.

So the total current for the full circuit is the sum of (b), (d) and (f) above:
1, =0.184 A, 1, =0576 A, I,=0.392A.



26.90: a) Fully charged:

Q=CV =(10.0x10" F)(1000 V) =1.00x 10~ C.
—Ve :
b) i, = ‘STC _ % - % = i(f) = (% —%je’/“ , where C" =1.1C.
c) We need a resistance such that the current will be greater than 1 pA for longer
than 200 us.

= (200 us) =1.0x10° A :%(1000 =

10x10°C ) - s
1.11.0x 107" F)
=1.0x10° A= %(90.9)e“‘8“°79)/13 =183R-RInR—-1.8x10" =0.

Solving for R numerically we find 7.15x10° Q< R<7.01x10" Q.

If the resistance is too small, then the capacitor discharges too quickly, and if the
resistance is too large, the current is not large enough.

26.91: We can re-draw the circuit as shown below:

-1
= R, =2R, +(i+ij =2R +ﬂ:ﬂg2 —~2RR, —2RR, =0.

, Ry R, + R,

=R, =R +R’+2RR, but R, >0= R, =R, ++ R’ +2RR,.

26.92:
n
16 WA b -1
WY m=n
]/(',-
"y
eI
W
7 73

Let current / enter at a and exit at b. At a there are three equivalent branches, so
current is / /3 in each. At the next junction point there are two equivalent branches
so each gets current 7 /6. Then at b there are three equivalent branches with current
/3 in each. The voltage drop from a to b thenis V' =(£) R+ (£) R+ (£) R=2IR.

This must be the same as V' = IR, ,s0 R = %R.

eq?



26.93: a) The circuit can be re-drawn as follows:

. .
.=
h er d
—{
R 1 R,R
Then V,, =V, =V, and R, = ———.
2R +R, “2R/R,+I R, + R,
2R (R, + R 2R
But g = (B 2)2 1:>Vcd=VahL.
R.R, R, 1+ p

b) Recall V, = dl =V, = A V°2:>V”: Vo Vo
a+58) d+p) 1+p) a+p a+p)"

If R1 =R2 :>RT =R1 +\}R12 +2R1R1 :Rl(l‘i‘\/g) and ﬂzz(lz;\/\gg):2'73 SO: for
+

the nth segment to have 1% of the original voltage, we need:

L 1 h01=n=4:7,=0005V,.
0+ B)"  (1+273)

¢) R, =R, ++R’+2RR,
= R, =6400 Q + \/(6400 Q) +2(6400 Q) (8.0x10° Q) =3.2x10° Q.

~2(6400 Q) (3.2x10° Q +8.0x 10° Q)
(3.2x10° Q) (8.0x10* Q)

=4.0x10".

= p

d) Along a length of 2.0 mm of axon, there are 2000 segments each 1.0 um long. The

voltage therefore attenuates by:
V VZOOO _ 1

Vi = g5 = - = =34x107",
™ TV, (1+4.0x107)
e) If R, =33x10" Q=R, =2.1x10°Q and f=62x10".
Voo _ 1 =0.88.

V, (1+62x107%)%



Capitulo 27



qv x B(-1.24 x10™ C)(—3.85x10*m/s)(1.40 T)(j x i)

27.1: a) F
= F =—(6.68x10™ N)k.

F
b) F = qv x B
= F=(-124x10" C)(1.40 T)[( —3.85 x 10*m/s)(j x k) + (4.19 x 10*m/s)(i x
— F =(6.68x107* N) i + (7.27x10™ N) }.

Lo

27.2: Need a force from the magnetic field to balance the downward gravitational force.
Its magnitude is:

-4 2
VB = mg = B _mg _ (1.95x lg kg)(9.80 mfs ) 101,
gv  (2.50x107° C)(4.00x10*m/s)
The right-hand rule requires the magnetic field to be to the east, since the velocity
is northward, the charge is negative, and the force is upwards.

27.3: By the right-hand rule, the charge is positive.

27.4: F-ma=qrxB—=a=2""8

m
(22« 10 0)(3.0x10* m/s)(1.63 T)(j x i) _

—(0.330 m/s*)k.
1.81x107° kg ( /s)




27.5:  See figure on next page. Let F, = qvB, then:
F, =F, inthe —k direction
F, = F, in the + j direction
F,. =0, since B and velocity are parallel
F, = F, sin 45° inthe — j direction
F, =F, inthe — (j + k) direction

y

AF,

27.6: a) The smallest possible acceleration is zero, when the motion is parallel to the
magnetic field. The greatest acceleration is when the velocity and magnetic field are at
right angles:

. qvB _ (1.6x107” C)(2.50 x10°m/s)(7.4x107 T)

. =3.25%x10"m/s’.
m ©.11x10"" kg)

b) If a= i (325x10°m/s)y = DB G s-025= =145
m

4.60x107"° N

27.7: F=lgvBsing=v= A o e
g Bsing (1.6x10™ C)(3.5x 107 T) sin 60

=9.49x10° m/s.



27.8: a) F=qvxB=qB.[v,(i xk)+v,(jxk)+v,(kxk)]=gB.[v, (=) +v,{)].

Set this equal to the given value of F to obtain:

F, (7.40 x 107 N)

y

v = = =
Y —gB. —(-5.60x10" C)(-1.25T)
F —(3.40x107 N)

X

vy = = " == —48.6 n’l/S.
gB.  (-5.60x10" C)(-1.25T)

z

—-106 m/s

b) The value of v, is indeterminate.

L F F
) v-F=vF +vF +v.F,=——F +—F =0,0=90".

- 4B, 9B,

—

27.9: F=qv xB,v=v,jwithv,=—-3.80x10"m/s
F, =+7.60x107° N, F, =0,and F, =-520x10" N
F.=q(v,B. -v.B,)=qv,B,
B.=F,/qv, =(7.60x107 N)/([7.8O x107° C)(-3.80x10°m/s)]=—-0.256 T
F,=q(v.B, —v B.)=0, which is consistent with F as given in the problem. No
force component along the direction of the velocity.
F,=q(v.B,-v B )=—qv B,
B, =-F_ [qv,=-0.175T
b) B, is not determined. No force due to this component of B along 17, measurement
of the force tells us nothing about B, .
¢) B-F=BF, +B,F, +B.F,=(-0175T)(+7.60x 107 N) +
(—0.256 T)(—5.20x 1073 N)
B-F= 0; B and F are perpendicular (angle is 90°)



27.10: a) The total flux must be zero, so the flux through the remaining surfaces must be
—0.120 Wb.
b) The shape of the surface is unimportant, just that it is closed.

c)

27.11: a) @, = B- A=(0.230 T)x(0.065 m)> =3.05x 10~ Wh.
b) @, =B - A=(0.230 T)z(0.065 m)’ cos 53.1° =1.83x 10" Wh.
c) @, =0since BLlA

27.12: a) ®,(abcd)=B-A=0.
b) @ ,(befc) =B - A=—(0.128T)(0.300 m)(0.300 m) = —0.0115 Whb.
¢) ®,(aefd)=B-A=BAcos¢= % (0.128 T)(0.500 m)(0.300 m) = +0.0115 Whb.

d) The net flux through the rest of the surfaces is zero since they are parallel to the x-
axis so the total flux is the sum of all parts above, which is zero.

27.13: a) B= [(B -y’ )]} and we can calculate the flux through each surface. Note that

there is no flux through any surfaces parallel to the y-axis. Thus, the total flux through the
closed surface is:

@, (abe) = B - A = ([~(0.300 T - 0)] +[0.300 T — (2.00 T/m?)(0.300 m)21])
x %(0.400 m)(0.300 m)
=-0.0108 Wh.

b) The student’s claim is implausible since it would require the existence of a
magnetic monopole to result in a net non-zero flux through the closed surface.



27.14: a) p=mv=m (@] = RgB = (4.68x107° m)(6.4x107"° C)(1.657T)
m
=4.94x107" kg m/s.
b) L=Rp=R>*qB=(468x10" m)*(6.4x107"° C)(1.65T)=2.31x10" kgm?/s.

my _ (9.11x 107" kg)(1.41x10°m/s)
lq|R (1.60 x 107 €)(0.0500 m)

The direction of the magnetic field is into the page (the charge is negative).
b) The time to complete half a circle is just the distance traveled divided by the
velocity:

27.15: a) B= =1.61x10" T.

tzﬂzﬂ:wzulxm” s.
v v 141x10°m/s

27 6
27.16: a) B:ﬂ:(1.67x10 _ll<9g)(1.41><10 m/s) _
gR (1.60x107" C)(0.0500 m)
The direction of the magnetic field is out of the page (the charge is positive).

b) The time to complete half a circle is unchanged:
t=1.11x107s.

0.294T

2717: K, +U, =K, +U,
U=K,=0,s0 K, =U,; %mv2 = ke’ [r

v=e1/2—k=(1.602x10’1° 0) — 2k —— =1.2x10"m/s
mr (3.34x107"" kg)(1.0x107" m)

b) ZF = ma gives qvB = mvz/r

BV _ (3.34x107% kg)(1.2x10"m/s) _
qr (1.602x 107" C)(2.50 m)

0.10T




27.18: a) F =qvBsind
F 0.00320x 10 N
T gvsing  8(1.60x 10™° C)(500, 000 m/s) sin 90°
B =5.00 T.If the angle @ is less than 90°, a larger field is needed to produce the

same force. The direction of the field must be toward the south so that ; X l_é can be

downward.
b) F =qvBsinf

o 4.60x10™"* N
gBsingd (1.60x107" C)(2.10 T) sin 90°
v=1.37x10"m/s.If @ is less than 90°, the speed would have to be larger to have the

same force. The force is upward, so v x B must be downward since the electron is
negative, so the velocity must be toward the south.

27.19: g =(4.00x10%)(—-1.602x107" C)=6.408x107" C
speed at bottom of shaft: +mv® = mgy; v=4/2gy =49.5 m/s

v is downward and B 1S west, So v x B is north. Since q<0, F is south.
F =qvBsinf = (6.408 x 10~ C)(49.5 m/s)(0.250 T) sin 90°=7.93x107"" N

2720: a) R="2
qB
, - 9BR _3(1.60x 107 €)(0.250 T)(2%° m)
m 12(1.67 x 1077 kg)

v=2.84x10°m/s
Since ¥ x B is to the left but the charges are bent to the right, they must be
negative.
b) Fl,, =mg=12(1.67x10"" kg)(9.80m/s*) =1.96 x 10> N
Fpeneic = qvB =3(1.6x 107 C)(2.84 x 10°m/s)(0.250 T)
=3.41x10"°N
Since F,,,, ~10" x F,~we can safely neglect gravity.

c) The speed does not change since the magnetic force is perpendicular to the velocity
and therefore does not do work on the particles.



_gRB _ (1.60x107" C)(6.96x107° m)(2.50 T) _
m (3.34x107% kg)
D 7R 7(6.96x107m)
b) t === 3
v oo 8.34x10°m/s

mv®  (3.34x107" kg)(8.34x10°m/s)

27.21: a) v 8.34x10°m/s.

=2.62x10"%s.

C) lmv2 =qV =V = — =7260 V.
2 2¢q 2(1.60x 107" C)
=31 6
27.22: g=v O 11x10 j(gg)(2,8 X 10°MS) _ ) 6510 m.
gB  (1.60x10™ C)(0.0877 T)
=31 - 12
27.23: 2) B_m27rf _(9.11x10™" kg)27(3.00 ¥+ x 10 Hz) 107 T

g (1.60x 107" C)

This is about 2.4 times the greatest magnitude yet obtained on earth.

b) Protons have a greater mass than the electrons, so a greater magnetic field would be
required to accelerate them with the same frequency, so there would be no advantage in
using them.

27.24: The initial velocity is all in the y-direction, and we want the pitch to equal the
radius of curvature

mv
=d =vT=—="=R
qB
But T:2_7r:_27tm.
© gB
my %
27rmvx — Y :>_y:27[:tan929:81.00.
qB gB v

X

27.25: a) The radius of the path is unaffected, but the pitch of the helix varies with time
as the proton is accelerated in the x-direction.

2r _ 2rm  27(1.67 x 107 kg)

b) T="- = — =131x107s,t=T/2,and
o  qB  (1.60x10™" C)(0.500 T)
~19 4
o F _aF _(16x10 C)(z.ogxlo V/m) 192 %10 ms?,
m m 1.67x107"" kg

, (192 10%m/s*)(6.56 x 10~

d, =v,t+ %axﬁ =(1.5x10°m/s)(6.56x10~* s) 5

=d_=0.014m.



-19
2726: L =q¥ = v= 240 o 2L OQ@OV) _ 500 g4y,
2 m (1.16x 10 kg)

_my _ (L.16x107™ kg)(7.79x 10" m/s) _
qB (1.60x 107 C)(0.723 T)

2|lg|AV 19 3
27.27: Lmv? =|gav = v = 247 _ [20.6x10" ©) 2.0x10°V)
2 m (911107 kg)

=2.65x10"m/s.

my  (9.11x107" kg)(2.65x 10" m/s)
[gR ~ (1.60x10™ C€)(0.180 m)
27.28: a) v=E/B=(1.56x10*V/m)/(4.62x 107 T) =3.38 x 10°m/s.

=R 7.81x107° m.

= B= =838x107*T.

b)
o| o| o | @
V‘
B! o| o | o
Y Y Y Y
E
=31 6

o R mv  (9.11x107" kg)(3.38x10°m/s)

“ldB T (1.60x107° C)4.62x107 T)
= R=4.17x10" m.
2zm _ 2zR  27(4.17x107 m)

= qB ~ v (338x10°m/s)

=7.74x107 s.

27.29: a) F, = F, so|qvB=|¢|E; B=E[/v=0.10T
Forces balance for either sign of ¢.
b) E=V/d sov=E/B=V/dB

smallest v:

largest V, smallest B, v, = 120V =2.1x10*m/s
(0.0325 m)(0.180 T)

largest v:

smallest V, largest B, v 60V 3.2x10°m/s

mn T 0.0325 m)(0.054 T)



27.30: To pass undeflected in both cases, E = vB = (5.85x10°m/s)(1.35 T) = 7898 N/C.
a) If ¢ =0.640x 107" C, the electric field direction is given by — (} x(— 12)) =i,
since it must point in the opposite direction to the magnetic force.
b) If g=-0.320x 10~ C, the electric field direction is given by ((—}) X (—12)) =i,
since it must point in the same direction as the magnetic force, which has swapped from
part (a). The electric force will now point opposite to the magnetic force for this negative

charge using F.= qE.

2 -19 2
131 g _mE _ _RqB> _(0.310m)(1.60x10" C)(0.540 T)

gB  ¢B’ E (1.12x10°V/m)
=1.29x107> kg

=25
= m(amu) = 1.29 10727 ke =78 atomic mass units.
1.66 x10™" kg
27.32: a) E=vB=(1.82x10°m/s)(0.650 T) = 1.18 x 10° V/m.

b) E=V/d =V =Ed=(1.18x10°V/m)(5.20 x 10~ m) = 6.14 kV.

27.33: a) For minimum magnitude, the angle should be adjusted so that (1_35 is parallel
to the ground, thus perpendicular to the current. To counter gravity, /LB = mg, so

B="%.
1L
b) We want the magnetic force to point up. With a northward current, a westward

B field will accomplish this.

27.34: a) F =1lb=(1.20 A) (0.0100 m) (0.588 T) = 7.06 x 10~ N, and by the righthand

rule, the easterly magnetic field results in a southerly force.
b) Ifthe field is southerly, then the force is to the west, and of the same magnitude as

part (a), F =7.06x10" N.
c) Ifthe field is 30° south of west, the force is 30° west of north (90°
counterclockwise from the field) and still of the same magnitude, F =7.60 x10~° N.

2735: =L = 013N =97 A
B~ (0.200 m) (0.067 T)

27.36: F = 1B = (10.8 A)(0.050 m)(0.550 T) = 0.297 N.



27.37: The wire lies on the x-axis and the force on 1 cm of it is

a) F=11xB=(-3.50A)0.010 m)(—0.65T)(i x })=+(0.023 N) &.

b) F=11xB=(-3.50 A)0.010 m)(+0.56 T)(i x &) = +(0.020 N) }.

&) F=I1xB=(-3.50A)0.010m)(~031T)(# x7)=0.

d) F=11xB=(-3.50A)0.010m)(—0.28T)( xk)=(-9.8x10" N) }.
¢) F=I1xB=(-3.50A)0.010m)[0.74T (¢ x })~036T (i x k)]

=—(0.026 N)k — (0.013 N)3.

> >

27.38: F=I11xB

Between the poles of the magnet, the magnetic field points to the right. Using the
fingertips of your right hand, rotate the current vector by 90° into the direction of the
magnetic field vector. Your thumb points downward—which is the direction of the
magnetic force.

27.39: a) F, = mg when bar is just ready to levitate.

2
1B = mg, 1 =& - (0-750kg)O0.80m/s") _
B (0.500 m)(0.450T)

e=IR=(32.67 A)(25.0Q) =817V

32.67A

b) R=2.0Q,1=¢/R=(816.7V)/(2.00Q) =408 A
F,=IlIB=92N

a=(F, —mg)/a=113 m/s’



27.40: (a) The magnetic force on the bar must be upward so the current through it must
be to the right. Therefore ¢ must be the positive terminal.
(b) For balance, F,,,, =mg
IIB sinf = mg
1IB sin@
m=———

g
I=¢/R=175V/5.00 Q=350 A

= (35.0 A)(0.600 m)(1.50 T)

9.80 m/s’ =321k

27.41: a) The force on the straight section along the —x-axis is zero.

For the half of the semicircle at negative x the force is out of the page. For the
half of the semicircle at positive x the force is into the page. The net force on the
semicircular section is zero.

The force on the straight section that is perpendicular to the plane of the figure is
in the —y-direction and has magnitude F = ILB.

The total magnetic force on the conductor is /LB, in the — y -direction.

b) If the semicircular section is replaced by a straight section along the x -axis, then the
magnetic force on that straight section would be zero, the same as it is for the semicircle.

27.42: a) r=IBA=(6.2 AY0.19 T)(0.050 m)(0.080 m)=4.71x 10" N - m.

b) u=14=(6.2 A)0.050 m)(0.080 m) = 0.025 A - m’.

¢) Maximum torque will occur when the area is largest, which means a circle:
27zR = 2(0.050 m + 0.080 m) = R =0.041 m.

= =IBA=(6.2 A)(0.19 T)z(0.04041 m)> =6.22x10° N - m.

27.43: a) The torque is maximum when the plane of loop is parallel to B.
t = NIBAsing =z, = (15)(2.7 A)(0.56 T)x(0.08866 m/2)* sin 90° = 0.132 N - m.
b) The torque on the loop is 71% of the maximum when sing = 0.71 = ¢ = 45°.



27.44: (a) The force on each segment of the coil is toward the center of the coil, as the
net force and net torque are both zero.
(b) As viewed from above:

B

30°

As in (a), the forces cancel.
2t=2F % sin 6

= JIBL sin 0
=(1.40 A)(0.220 m)(1.50 T)(0.350 m) sin 30°
=8.09 x 102 N - m counterclockwise

27.45: a) T=2xr/v=15x10"s
b) I=Q/t=e/t=1.1mA
¢) u=IA=1Izr*=93x10"" A-m?

27.46: a) ¢ =90°: 7 = NIAB sin(90°) = NIAB, direction : k x j=—i,U = — NuB cos ¢ =
b) ¢ =0:7= NIAB sin(0) =0, no direction, U = — NuB cos¢ = — NIAB.
¢) ¢=90°: 1= NIAB sin(90°) = NIAB, direction: —k x j=i,U = — NuB cos¢ = 0.
d) ¢ =180°:7 = NIAB sin(180°) = 0, no direction, U = — NuB cos(180°) = NIAB.

27.47: AU=U, —U, =— pB cos 0° + uB cos 180° = — 2 4B
=—2(1.45A-m>)(0.835T) =—2.42 J.



27.48: a) Vab:g”,,:]:Vab—e:lzoV—msv
r 320

b) Psuppued =1V, =47 A)(120 V) =564 W.
C) Ppen =1V, —I’'r =564 W — (4.7 A)’(3.2Q) =493 W.

=47 A.

27.49: a) 1, =20V 113 A,
106 Q
b) 1, =l —1, =482 A-113 4=3.69 A.
Q) V=e+I,R =e=V—1R =120 V—(3.60 A)5.9Q) =982 V.
d) Poy = él, = (982 V)(3.69 A) =362 W.

27.50: a) Field current 7, = 120V =0.550 A.
218 Q
b) Rotor current /, =1, —1, =4.82 A —-0.550 A =427 A.
) V=ec+I R =e=V—-IR =120V — (427 A)(5.9Q) =948 V.
d) P, =I;R, =(0.550 A)*(218 Q) =65.9 W.
e) P.=I'R =(427 A)*(5.9Q)=108 W.
f) Power input = (120 V) (4.82 A) =578 W.
Pout ul - . - 1 - 4
o) Efficiency = ~2u _ (578 W -659W —108 W -45W) 359 W
B 578 W 578 W

=0.621.

27.51: a) v, L1

_ 120 A
(0.0118 m)(2.3x107* m)(5.85x10”® m)(1.6x107" C)
=v, =472x10"m/s.

b) E. =v,B, =(472x107m/s)(0.95 T) =4.48 x 10~ N/C, in the + z -direction
(negative charge).
¢) Vi =2E. =(0.0118 m)(4.48x10°N/C)=5.29x107 V.



2752 JB, IB, IBz  IB,
. . n= = = =
B (78.0 A)(2.29 T)
(2.3x107* m)(1.6x 107" C)(1.31x107* V)

= n=3.7x10* electrons per cubic meter.

-

27.53: a) By inspection, using F =qv xB, B=-B j will provide the correct direction
B

for each force. Using either force, say F,,

qlv,|B _ i(since vi| = v

NG

b) I = q|v1|B sin 45° =

27.54: a) F=qvxB=—qV[B,(jxi)+B.(jxk)]=qVB k—qVB.i
b) B, >0, B, <0,sign of B, doesn't matter.

¢) F =|qVB.i —|qVB.k. 17“‘ =~2|qvB,.

27.55: The direction of E is horizontal and perpendicular to v, as shown in the sketch:

E
® ®@P;5
Fg. (—v
B

F,=qvB, F, =qk
F, = F, for no deflection, so gvB = gE
E =vB =(14.0 m/s)(0.500 T) = 7.00 V/m

We ignored the gravity force. If the target is 5.0 m from the rifle, it takes the
bullet 0.36 s to reach the target and during this time the bullet moves downward

Y=Y, =34 yt2 =0.62 m. The magnetic and electric forces we considered are horizontal.

A vertical electric field of £ =mg/q =0.038 V/m would be required to cancel the
gravity force. Air resistance has also been neglected.



27.56: a) Motion is circular:

x*+y’ =R’ =>x=D=y, =+/R’ =D (path of deflected particle)
v, = R (equation for tangent to the circle, path of undeflected particle)

2
d=y,-y,=R—+R* -D* =R - R1/1 {1—1/1—1)—}

———R

2

IfR>D=d~R l—lD— :D—.
2 R? 2R

. o . my
For a particle moving in a magnetic field, R = —.

qB
2
Thus, the deflection d = DB \/7 D’B \/7

b) d = (0.50 m)*(5.0x107° T) (1.6 x 10*19 0)
2 2(9.11x107" kg)(750 V)
d =13% of D, which is fairly significant.

=0.067 m =6.7 cm.

27.57: a) v = gBR _(1.6x10™" C) (0.85T) (0.40 m)

max 37 =3.3x 107 m/s.
m 1.67x10™"" kg
-27 7 2
Lb Ly, (L6710 kg)2(3.3 X107 mMIS) oo s s s ey

2zR ~ 27(0.4 m)
v 33x10" m/s
c¢) Ifthe energy was to be doubled, then the speed would have to be increased by
\/2_, as would the magnetic field. Therefore the new magnetic field would be

B =+2B,=12T.

b) T= =7.6%x10"s.

d)For alpha particles,

) m, (2q,)
Ep (@)= Epy ()" % = E, (1) yP
m, q, (4m,) ¢

P

= Emax (p)



ijok| i
27.58:a) F=gqvxB=q, v, v.|=q|0 0
B. B, B. B, B,

~

=—qvB i +qVB,j.

oo o= =

But F = 3Fof + 4FO}, s0 3F, =—qvB, and 4F, = qvB,
_3F, 4F,

=B, =———, B, =—-, B. isarbitrary.
qv qv
6F 2 2 2 F, 2 F, 2
b) B=—2=\B +B +B =-2,9+16+B.°  =—",25+B
) qV \/ X y z qV z qV z
~ B =J_rllFO.
z qv

© _qB _ f _ qB/2wm, _em, :(1]1.16“026 Ke _ 154

27.59: f=2 = Lo _ -
4 2r  2mm  f,, q,B/2mm, 3em, \3)9.11x107" kg

27.60: a) K=2.7MeV (2.7x10%V)(1.6x107" J/eV)=4.32x10"" 1.

-13
Lo K a0ty e
m 1.67 x10™" kg

_mv _ (1.67x107 kg) (2.27 x 10" m/s)
gB (1.6x10™"° C)(3.57)

v 227x10" m/s
Also,ow=—=—"—————
R 0.068 m

b) If the energy reaches the final value of 5.4 MeV, the velocity increases by V2 , as
does the radius, to 0.096 m. The angular frequency is unchanged from part (a) at

3.34x10%rad /s.

=0.068 m.

=R

=3.34 x10® rad/s.



27.61: a) F=gvxB = ql(vsz )i —(v.B, )}J:> F? = qz[(vyBZ)2 - (vaZ)z]

= F? 1
B’ () +(v,)
~125N I
~ 1700 * m/s)| © m/s)]?
0.120 T | [4(1.05x 10° m/s)|” +[- 3(1.05x10° mys))]
=-1.98x10"° C.

- F ‘TXE o “
b == =%[(vyBZ)z—<vaZ)1]
- —-198x10°C
o

a=—""""""~(1.05x10° m/s) (=0.120 T) |4i + 3]
2.58x107" kg ( ) ( )[ J]

= a=9.67x10"m/s* [4 + 3]

¢) The motion is helical since the force is in the xy-plane but the velocity has a z-
component. The radius of the circular part of the motion is:

-15 6
p_mv_(258x10 kg)é(S) (1.05x10° m/s) _ o oo
B (1.98x107° C) (0.120 T)

-6
d) f:ﬂz qB :(1.98><10 0) (7?5.120T):14.7 MHz.
2 2mm 27(2.58 107" kg)

e) After two complete cycles, the x and y values are back to their original values, x =
R and y = 0, but z has changed.

6
z=2Tv, = 2v. = 2(+12) (1.05x 10 m/s)
S 1.47x10" Hz

=1.71m.



2 -19
27.62: a) MV gE=y \/qER [k | aexi0”oa20v)
R m m In(b/a) (9.11x 107" kg)In(5.00/0.100)

= v =2.32x10° m/s.

2
my

b)

=q<E+vB>:>[%j v? ~(gB)v - gE =0

= (228 x107) 1 — (208 x 102 )y - (1.23x107) = 0
= 1=282x10° m/sor —1.91x10° m/s,

but we need the positive velocity to get the correct force, so v = 2.82 x10° m/s.

c¢) Ifthe direction of the magnetic field is reversed, then there is a smaller net
force and a smaller velocity, and the value is the second root found in part (b),
=v=3.19x10° m/s.

4
27.63: v=% _L8XI0T NIC 5 e 10* mys,and R =™ so-

0.701 T 4B
_ 82(1.66x 10 kg) (2.68 x10* m/s)

) ke =0.0325m.
(1.60x 107 C) (0.701 T)
-27 4
, = 34066x10 7 k268 x 10" ms) _ 333
(1.60x10™° C) (0.701T)
-27 4
_86(1.66x 10" kg) (2.68x10* m/s) _ 0

86

(1.60x10™ C) (0.701T)
So the distance between two adjacent lines is 2R = 1.6 mm.

27.64: F . =q(v,B. -v.B,)=0.
F,=q(v.B, -v.B.)=(9.45x107 C) (5.85x10" m/s) (0.450 T)
=2.49x107° N.
F.=q(v.B,—v,B)=—(945x10" C) (-3.11x10*m/s) (0.450 T)
=1.32x107 N.



27.65: a) [, F=1I1.,xB=1I(,B)jxi=-(6.58A)0.750 m)(0.860 T)k
= (-4.24 N)k.

I :F=1lnxB=1(_B) {(’JE") « z} — _ (6.58 A)(0.750 m)(0.860 T) }

=(-4.24 N)J.
N k=5 +|__ ek
l,:F=11.uxB=1I(,B) 7 " (6.58 A)(0.750 m)(0.860 T) |j + &k

= F=(424N) [} + k|

l,:F=Il.sxB=1,B [— kx i ]: — (6.58 A)(0.750 m)(0.860 T)j = (—4.24 N)
l - - -

i F=I1yxB=I(,B)~i)xi=0.

b) Summing all the forces in part (a) we have F o = (—4.24 N)}.
27.66: a) F = ILB, to the right.

2 2
b) v =2ad >d=——=""
2a  2ILB

~(1.12x10* m/s)*(25 kg)
" 2(2000 A)(0.50 m)(0.50 T)

¢) d =3.14x10° m = 3140 km!

27.67: The current is to the left, so the force is into the plane.

ZFy =Ncos<9—Mg=OandZFx =Nsinf - F, =0.
_ Mg tan6
LB

= F,=Mgtan0 =ILB= [



27.68: a) By examining a small piece of the wire (shown below) we find:

F, = ILB = 2T sin(0/2)

DILBzZ_Iz"GZZTL/R T

=
2 I B

b) For a particle:

2 2 2 1/2
G2 (B[ x| _L[gBx | _m_
v, 20 m v, 2 m 2gV

1
qg 2
=y=Bx"|——|.
4 (SmVJ

b) This can be used for isotope separation since the mass in the
denominator leads to different locations for different isotopes.



27.70: (a) During acceleration of the ions:

1,
V =—mv
1 2

= |24V
m

In the magnetic field:

2qV
R_mv_m T

gB 4B
o IB°R
2V
)V gB*R* _ (1.60x 107" C€)(0.150 T)*(0.500 m)*
2m 2(12)(1.66 x 107" kg)

V =226x10* volts
(c) The ions are separated by the differences in their diameters.

2Vm
qB’

AD=D, - D, =2 /22"21 -2 /21;”21
gB*|, "\«
= ) (5 i)
q

5 [2(2.26 x10* V)(1.66 x 107" kg) _
- 2\/ (1.6 x10™ C)(0.150 T)? (\/ﬁ Jﬁ)

=8.01x107 m ~ 8 cm — easily distinguishible.

D=2R=2

12




27.71: a)

Divide the rod into infinitesimal sections of
length dr.

The magnetic force on this section is dF, = I B dr and is perpendicular to the rod.
The torque dr due to the force on this section is dr = rdF, = IBr dr. The total torque is

Id‘[ =B JZr dr =1 II’ B = 0.0442 N/m, clockwise. This is the same torque calculated

from a force diagram in which the total magnetic force F, = IIB acts at the center of the
rod.
b) F, produces a clockwise torque so the spring force must produce a

counterclockwise torque. The spring force must be to the left, the spring is stretched.
Find x, the amount the spring is stretched:

Z 7 =0, axis at hinge, counterclockwise torques positive

(kx)l sin 53° - 11I’B=0

‘e 1IB _ (6.50 A)(0.200 m)(0.340 T)
2k sin 53.0° 2(4.80 N/m) sin 53.0°

U=1hk?=798x10"17

=0.05765 m




27.72: a) F=11xB= F,,=(500A)(0.600 m) (3.00 T) sin(0°) = 0 N, F,
= (5.00 A) (0.800 m) (3.00 T) sin(90°) = 12.0 N(into the page), F,, = (5.00 A) (1.00 m) (3
(4820) = 12,0 N (out of the page).

b) The net force on the triangular loop of wire is zero.
c¢) For calculating torque on a uniform wire we can assume that the force on a wire is
applied at the wire’s center. Also, note that we are finding the torque with respect to the

PR-axis (not about a point), and consequently the lever arm will be the distance from the
wire’s center to the x-axis.

|?|=‘FxF‘szsin(0):>rPQ=r(0N):0,rRP:(Om)Fsin9=O,rQR =

(0.300 m) (12.0 N) sin(90°) = 3.60 N - m (pointing to the right and parallel to PR)
d) According to Eqn. 27.28, 7 = NIAB sin ¢ = (1) (5.00 A) (%) (0.600 m) (0.800 m)
(3.00 T) sin(90°) = 3.60 N - m, which agrees with part (c).
e) The point Q will be rotated out of the plane of the figure.

27.73:

sl .

Mgy

Z =0,

counterclockwise torques positive
mg(1/2) sin 37.0° — IAB sin 53.0°, with 4 =[*

_mg sin 37°  mg tan 37°

- : = =100 A
2[B sin 53° 2IB

27.74: a) F=11xB=1(k)xB=1l|-B,)i +(B)j
= F, = ~IIB, = ~(9.00 A) (0.250 m) (~0.985 T) = 2.22 N,
F, = IIB, = (9.00 A) (0.250 m) (~0.242 T) = ~0.545 N

= F_ =0, since the wireis in the z - direction.

b) F=yF’+F=y(2.22N)’ +(0.545N)> =229 N.




27.75: Summing the torques on the wire from gravity and the magnetic field will enable
us to find the magnetic field value.
7, = IAB sin 60° = B(8.2 A) (0.060 m) (0.080 m) sin 60° = (0.0341 N - m/T)B.

There are three sides to consider for the gravitational torque, leading to:

7, =mgglg sing + 2mygl, sing,

where /; is the moment arm from the pivot to the far 6 cm leg and /; is the moment arm
from the pivot to the centers of mass of the 8 cm legs.

=>7,=098 m/s*) sin 30°[(0.00015 kg/cm) (6 cm) (0.080 m)
+ 2(0.00015 kg/cm) (8 cm) (0.040 m)]

-4
=7,=823x10"N-m= B= 8.23x10 N-m _ 0.024 T, in the y - direction.
¢ 0.0341 N-m/T

27.76: a) = IAB sin 60° = (15.0 A)(0.060 m) (0.080 m) (0.48 T) sin 60° =0.030 N -m

in the — j direction. To keep the loop in place, you must provide a torque in the +}

direction.
b) 7 = I4B sin 30° = (15.0 A)(0.60 m) (0.080 m) (0.48 T) sin 30°=0.017 N-m, in

the + } direction you must provide a torque in the —} direction to keep the loop in
place.

c¢) Ifthe loop was pivoted through its center, then there would be a torque on both
sides of the loop parallel to the rotation axis. However, the lever arm is only half as large,
so the total torque in each case is identical to the values found in parts (a) and (b).

- 2
27.77: 7| =1]al=1, 44 _ ~1 d—2
dt dt
but |7|= uB sing = NIAB ¢ (sin ¢ ~¢)if ¢ is small)
_ d’¢ __NI4B y
> 1

This describes simple harmonic motion with

w0 =My 2T op | L
I %) NIAB

s



27.78: |7| = uBsin ¢ = I4Bsin ¢.
2
$=90°1=qf =42 4=m z[ij N (‘1“’)(“ ]B qoisB
2 2

2 )\ 4 87’

27.79: The y-components of the magnetic field provide forces which cancel as you go
around the loop. The x-components of the magnetic field, however, provide a net force in

the —- direction.
27R

F = J‘NIB dl sin 60° = NIB sin 60° jdl = 27 RNIB sin 60°

= F = 27(0.0156/2 m) (50) (0.950 A) (0.220 T) sin 60° = 0.444 N.

27.80: Y7, =Y r xF, =Y r xF-r,x Y F, =Y (r,-r,) xF,=Y7,(P).

Note that we added a term after the second equals sign that was zero because the
body is in translational equilibrium.

—

27.81: a)
B

. >k - 2 LBOydyA 1 2
b) Sidel:F :'[Idl x B =1j—k =~ BoLLi.

Side 2: F = J.[dle 1[ OJ]idx_[ — IB,Lj.

0,y=L 0,y=L

Side 3: F = J.[dle 1] B dy _ )——%IBLI.

L,x=L L,x=L L
. o = ¢ B,y dx
Side 4: F = j[dle:] j —=—j=0.
L,y=0 L,y=0

c) The sum of all forces is F o = —[BOLj.



27.82: a)
2

/ B

1 3
4

1 ~

B,LIk.

- L - o> LBydy n
b) Sidel:F =[Id I xB=1[=>"(-k)=——
) )L 2

L
=T /: VAN | :
c) If free to rotate about the x-axis => =L x F = Tz = E[ABOL
. - - - IBOL2 N 1 N
d) If free to rotate about the y-axis =t =Lx F = = _EIABO J-

> > o
e) The form of the torque 7 = 4 x B is not appropriate, since the magnetic field is not

constant.



27.83: a) Ay=0.350m - 0.025 m =0.325 m, we must subtract off the amount
immersed since the bar is accelerating until it leaves the pools and thus hasn’t reached v,
yet.

vi=0= V02 —2gAy = v, =4/2gAy.
= v, =4/2(9.8 m/s?)(0.325) = 2.52 m/s.

b) In a distance of 0.025 m the wire’s speed increases from zero to 2.52 m/s.
v? _ (252 m/s)’

a= = =127 m/s*. But
2Ay  2(0.025 m)

m(g+a) (540x107 kg) ((127 +9.8) m/s”)
LB (0.15 m) (0.00650 T)

V. 150V

1 7584

=758 A.

F=ILB-mg=ma=1=

c) V=IR=R-= =0.20 Q.

27.84: a) [, =94 A1 _40 @
dt At 2nmr 3mr
ev evr
b = I A = —727"2 = —
) My =L A= 3
c¢) Since there are two down quarks, each of half the charge of the up quark,

evr 2evr
lud :luu :leutotal :T
3u 3(9.66 x 1077 A -m?

d) v= =7.55%x10" m/s.

2er  2(1.60x 10" C)(1.20 x 10 " m)

27.85: a) ji = IA h = — Ik using the right - hand rule.
i j k
b) 7=axB=|0 0 —I4=i(I4B,)- j(I4B,).
B, B, B

But 7 =4Di —3Dj,s0 IAB, = 4D, - IAB, =-3D
3D p _4D

=B = .
14 T IA

2
ButB=\/B2+B’2+BZIQ,SO &4_32:@
’ N I
12D

=B, :ig,butU:—;-§<0, sotakeBzz—lz—D.

14



27.86: a) di = dlf = Rd0|-sin 0 + cos 6} Note that this implies that when 0 = 0, the
line element points in the + y-direction, and when the angle is 90°, the line element
points in the — x-direction. This is in agreement with the diagram.

dF = Idl x B = IR0 [— sin 0i + cos Gj]x (Bxf) = dF = IB Rd0 [— cos 1912]

2z 2r
b) F = [—costIB,R dok =—IB.R [ cos 6ok = 0.
0 0

c) dr = rxdF = R(cos 6i + sin 0}') x(IB.R df [— cos 9]2] )
= d7 =—R*IB.d0 (sin 0 cos i — cos® 6)).

2r 27[ . ;
d) 7= J'df = —R2[Bx(jsin9cos Od6i — J‘cos2 Qd‘ﬁj - [R2B"(§ ’ Sm429j /

0 0 0

= 7=IR*Bzj=ItR’B j=14k x Bji =7 = jix B

27.87: a) {B-dA= [B.dA+ [ Bdd= [(BL)dA+ [B,d4=0.

top barrel top barrel

=0=pLm’ + B 2mL = B,.(r) :—%.

b) The two diagrams show views of the field lines from the top and side:

27.88: a) AU =—(ji,-B-j, - B)
= (i, - i))- B = |- u(—k — (~0.87 + 0.6 )] B, 120 + 3} -4k
= AU = I4AB,[(-0.8)(+12) + (0.6)(+3) + (+1)(-4)]
= AU =(12.5 A)(4.45x107* m?)(0.0115 T)(~=11.8) = =7.55x107*]J.

—4
b) AK =+ = o= 2ok = [ 2UXN0 D gy gy
2 1 8.50x10"" kg-m




27.89: a) R= " = 3201077 kg)(1.45x10° mfs) _

5.14 m.
gB (2.15x107° C)(0.420 T)

5.14m
0.25m
0

b) The distance along the curve, d, is given by
d = RO =(5.14m)sin"'(0.25/5.14) = 0.25 m.

and 14 _02m_
v  1.45x10° m/s
¢) Ax, =dtan(0/2)=(0.25 m)tan (2.79°/2) = 6.08 x 10~ m.

d) Ax=Ax, + Ax, =6.08x10~ m + (0.50 m) tan(2.79°) = 0.0304 m.

=1.72x10"°s.

27.90: a) Ap = FA=IIBA=JiB.
by J = Ap _ (1.00 atm)(1.013x 10° Pa/atm)
1B (0.0350 m)(2.20 T)

=1.32x10°A/m>.

27.91: a) The maximum speed occurs at the top of the cycloidal path, and hence the
radius of curvature is greatest there. Once the motion is beyond the top, the particle is
being slowed by the electric field. As it returns to y = 0, the speed decreases, leading to a
smaller magnetic force, until the particle stops completely. Then the electric field again
provides the acceleration in the y-direction of the particle, leading to the repeated motion.

1 [2gE
b) WdequdquyzEmVZ:VZ 4
m

c) At the top,
2
F o=qE—qup=-"""__™m24ky
! R 2y m

:—qE:>2qE:qu:>v:2?E.



Capitulo 28



28.1: For a charge with velocity v = (8.00x10° m/ s)}', the magnetic field produced at

a position 7 away from the particle is B= Z—OL;W So for the cases below:
T
a) F=(+0500m)i = pxf=—k,rl=1

IS L S ) (6.0x10° C)(8.0><106m/s)l€=

- . 0.50m)? ~(1.92x107° T)k = Byk.
b) 7 =(-0.500m)j= pxi=0= B=0.
c) Fz(O.SOOm)IQ:ﬁxi:+f,r02—%.
:E:+Z—;%52305.
d) 7=-(0.500m)j+ (0.500 m)k = px F=—i,r> =—=2r,

28.2: B, -B+B=to[L 91V
4w \d d

v 120 m 120 m
4 0.120 m) 0.120 m)

gt ((8.0 x10° O)(4.5x10°m/s) . (3.0x10°° C)(9.0 % 106m/s)j
= B=438x10"* T, into the page.



28.3: B-tod"XT
Az F°
a) v=vi,F=ri; vxF=0,B=0
b) 17=vc,17=rA', ‘7><17=vrle,r=0.500m

=131x10°T

»? (0.500 m)’
q is negative, so B = — (1.31x0°° T)k
¢) ¥ =vi,F =(0.500m)(i + j); ¥xF =(0.500 m)vk,=0.7071m
B ( Z_; ) (alf x7/r)= 1x107 N- sz/Cz)(4.8O(>;.170067 1cr)rg)a.soo m)(6.80 x10°m/s)
B=4.62x107T, B=-(4.62x10"7 T)k
d) \7:\/1:,17:1”/2; ﬁxF:—vﬁ,r:O.SOOm
2 =(&j@= 1x107 N-s%/C?)(4.80 x 10 C)(6.80 x 10° m/s)
ar ) r* (0.500 m)
B=131x10°T, B=(1.31x10°T)j

B (&jw _1x107 N-s2/C?)(4.80x107° C)(6.80 x 10°m/s)

28.4: a) Following Example 28.1 we can find the magnetic force between the charges:
[ -6 -6 6 6

F, =ﬂqq;}v :(10'7T~m/A)(8'00x10 C)(3.00x10 C)(4.502x10 m/s)(9.00 x 10°1r
r (0.240 m)

=1.69 x 107 N (the force on the upper charge points up and the force on the lower char

points down).
The Coulomb force between the charges is
F =k =(899x10" N- m?/C?) BWEW=10TC _ 3 75N (the force on the upper

(0.240 m)?
charge points up and the force on the lower charge points down).
The ratio of the Coulomb force to the magnetic force is 1693':15011 < =2.22x 10° = vsz .

b) The magnetic forces are reversed when the direction of only one velocity is
reversed but the magnitude of the force is unchanged.



28.5: The magnetic field is into the page at the origin, and the magnitude is
B=B+B’=ﬂ(‘1—f+ ‘”j

12

4 \ r r
gt (4.0x107° C)(2.0x10°m/s) N (1.5x107° C)(8.0x 10°m/s)
4x (0.300 m)’ (0.400 m)’

= B=1.64x10"° T, into the page.

: . gV HogV'
28.6: a =—gq; B =—"= into the page; B, =—"— out of the page.
) 4 =—-¢;B, A page; By =" pag
() v=s=B=—tod"_
2 47(2d7)
(i) vV'=v=>B=0.

into the page.

(iii)) vV'=2v=B= % out of the page.

2.1
= ., v'v : .
b) F=¢"v'xB, — 9 VY and is attractive.

47(2d)?
c) F, =/¢Oq2vv' F.= ¢ :>£=,u3vv’=,ua(3.00><105m/s)2
oanQd)?’ ¢ Ame,(2d) T F. " o0

=1.00x10"°.

28.7: a) 7 =cosbi +sin 6 = cos(150°)i + sin(150°)j = — (0.866)i + (0.500) .
b) dl xF=(—dli)x(—(0.866)i + (0.500))=—dI(0.500)k =—(5.00x 10~ m)k
o dB=tol dlzx F_opldl (0.;500 m) » _ py (125 A)0.010 m)EO.SOO m) ;
dr  r Vi¥is r 4 (1.20 m)
—dB=-(43x10" T)k.




28.8: The magnetic field at the given points is:

dB, _ My Ldl 521n 0 _ u, (200A) (0.0001200 m) _ 200x10°°T.
4r r 4 (0.100 m)
dB, 4 1 dl s21n 0 _ M (200 A) (0.000100 1121) sin 45 —0705x10°° T.
4 r 4r 2(0.100 m)
dB. _ M Ll s21n 0 _ uy (200 A) (0.0001200 m) _ 200x10° T.
4r r 4r (0.100 m)
JB _ﬂ]dlsinﬁ_ﬂldlsin(oc’)_o
‘" an r 4 r '
ap =t I dlsin 0
4z
_ g Mo (200 A)(0.00100 m) 2

4z 3(0.100 m)> V3
= dB, =0.545x10° T.




28.9: The wire carries current in the z-direction. The magnetic field of a small piece of

wire dF = o L xF
AT r

at different locations is therefore:

A

a) F=(2.00m)i =IxF=j
4 . °
- Idlsin@ - _ My (4.00 A) (5x10 2rn)sm90
4r r 4n (2.00 m)
b) r—(200m)j:>l><r——l
—u, Idlsin@: —u, (4.00A)(5x107 m)sin (900)

—dB = i =
4 r 4 (2.00 m)*

—_5.00x10™" Ti.

=5.00x107"" 7j.

\

_ A N TP,
¢) 7=(2.00m)i +(2.00m)j=ixf=——(j—1)
) N

Idising 1 )= ﬂo (4.00 A) (5.0x10™ m) 1

»_Ho
:>dB_4n = f( 7 (2.00m)y +(2.00m) v2 7

(G -

=1.77x10" T(j - i)

d) F=(2.00mk =1x7=0

28.10: a) At x—i B= ’u‘)] ! + Ly ) (i]=4‘u—°1, inthe j direction.
2 d)2 " 3d/2) 22 \3d) 3ud

b) The position x = —% is symmetrical with that of part (a), so the magnetic

field there is B = ! ,
37ed

in the } direction.

28.11: a) At the point exactly midway between the wires, the two magnetic fields are in

opposite directions and cancel.
b) At a distance a above the top wire, the magnetic fields are in the same

'u0112+'u0112='u0112+ Mol ]€=2’u0[]€‘
27, 27, 2ma 27 (3a) 3ma
c) At the same distance as part (b), but below the lower wire, yields the same
2l g
3ra

direction and add up: B=

magnitude magnetic field but in the opposite direction: B=-



28.12: The total magnetic field is the vector sum of the constant magnetic field and the
wire’s magnetic field. So:
a) At (0,0, 1 m):

—_ I, A 8.00 A) ; A
B=Bo -2l _a50x10°m)i - BN 6107y
27 27(1.00 m)
b) At (1 m, 0, 0):
B=Bo+ 2l —(1.50x10°T)f + LB00A) o
2zr 27(1.00 m)
= B=(1.50x10"°T)i + (1.6 x10° T)k =2.19x10° T, at 0 = 46.8°
from x to z.
¢) At(0,0,—0.25m): B=Bo + Ml i _ (1.50x107°T)i + 6 B00A) ¢
2nr 27(0.25 m)
=(7.9%x107° T)i.
28.13: B = ol r 2 Xdyz 32 ol 2, 2 Y 2| ol 2 2a VPR
4 o (x" 4+ y7) 4r x (x"+y7) |7a 4 x(x" +a”)
—4
28.14: 3) B, = ml _ 2B, _ 2x(0.040m) (5.50x10°T) o
2mr Ho o

b) B=2l o BGr=0080m)=2r = 2.75x10 T,
2nr 2

B(r = 0.160 m) :% =1.375x107* T.

28.15: a) B=Ltol _ 14,(800 A)
2zr  2x(5.50 m)

b) Since the magnitude of the earth’s magnetic filed is 5.00 x 10~ T, to the north,

the total magnetic field is now 30° east of north with a magnitude of 5.78 x 10~ T. This
could be a problem!

=2.90x107 T, to the east.



28.16: a) B = 0 since the fields are in opposite directions.

b) B=B,+B, = Kol ] :ﬂOI[L+lj

2ar,  2mr, 2w \r, 1,

2z 03m 02m
=6.67x10° T =6.67 uT

:(47rx10‘7Tm/A)(4.0A)( Lo, j

c)
Ba
B )
. 4 /, }‘\
7 ]
By, /8 } \\
g /M b
AY
/! : £ N
[R5
<
s \x
! \
@3srp__rL ______ @
a b Notethat B .17, and B , L7,

B=B,cos0+ B, cost
=2B, cos 0

tan 6 = % —>0=14.04°: 7, = /(0.20 m)* + (0.05 m)’

B=2’u—°[ cos 0
27

_, (47 +107 Tm/A) (4.0 A)
277 /(0.20 m)* + (0.05 m)’

cos 14.04°

=7.53x107° T =7.53 uT, to the left.



28.17: The only place where the magnetic fields of the two wires are in opposite
directions is between the wires, in the plane of the wires.

Consider a point a distance x from the wire carrying /, =75.0 A. B,, will be

tot

zero where B, = B, .

ol _ tl,
27(0.400 m —x) 27mx
1,(0400m—-x)=1x; [,=250A,1,=75.0A

x=0.300m; B, =0 along a line 0.300 m from the wire carrying 75.0 A amd 0.100 m
from the wire carrying current 25.0 A.

b) Let the wire with 7, =25.0 A be 0.400 m above the wire with 7, =75.0 A.
The magnetic fields of the two wires are in opposite directions in the plane of the wires
and at points above both wires or below both wires. But to have B, = B, must be closer

to wire #1 since /, < I,, so can have B, =0 only at points above both wires.
Consider a point a distance x from the wire carrying /, =25.0 A. B, will be

zero where B, = B,.

tol, _ Hol,
2nx 27 (0.400 m + x)

Lx=1,(0.400 m + x); x =0.200 m

B, =0 along a line 0.200 m from the wire carrying 25.0 A and 0.600 m from the wire
carrying current /, =75.0 A.



28.18: (a) and (b) B = 0 since the magnetic fields due to currents at opposite corners of
the square cancel.

(c)

©

c d
B =B, cos45°+ B, cos 45° + B, cos 45° + B, cos 45°

=4B, cos 45°=4 (,u_olj cos 45°
2nr

r=4/(10 cm)’ + (10 cm)> =105/2 cm = 0.10v2 m
-7
_,Urx107 Tm/A) (1004)
27(0.10v/2 m)
=4.0x10"* T, to the left.

B 5°



i B, ®B,®B,0
1
B= ’u—o; r =0.200 m for each wire

27
B, =1.00x10>T,B,=0.80x10" T ,B, =2.00x107 T
Let © be the positive z-direction. /7, =10.0A,7, =8.0A,7, =20.0 A
B,=-1.00x10"T,B,, =-080x10" T, B,, =+2.00x10” T
B,+B, +B;,+B, =0
B,,=—(B.+B,.+B_)=-20x10°T
To give B , Inthe ® direction the current in wire 4 must be toward the bottom of the
page.

-6
gotal g B _(0200m@0x10°T)
27r (o) 27) (2x107 T-m/A)
I’ I’
28.20: On the top wire: F_al (l - L] = o , upward.
L 27 \d 2d 47rd

On the middle wire, the magnetic fields cancel so the force is zero.

I’ I’
On the bottom wire: £l (— 1 + LJ _ o , downward.
L 2 d 2d 47rd

28.21: We need the magnetic and gravitational forces to cancel:

_ALL el
27th 27\g



Fo ol I, L 11,(5.00 A) (2.00 A) (1.20 m)
27 27(0.400 m)

repulsive since the currents are in opposite directions.
b) Doubling the currents makes the force increase by a factor of four to

F=240x10" N.

28.22: a) =6.00x 10~° N, and the force is

11 .
2823 Lo Aol g T2 (401075 Njmy 220020 M)
L 2w L pol, 14,(0.60 A)

b) The two wires repel so the currents are in opposite directions.

=8.33 A.

28.24: There is no magnetic field at the center of the loop from the straight sections.
The magnetic field from the semicircle is just half that of a complete loop:

golp _1(aml)_ml
2 " 2 2R 4R’

into the page.

28.25: As in Exercise 28.24, there is no contribution from the straight wires, and now we
have two oppositely oriented contributions from the two semicircles:

_ L a
B_(Bl _Bz)—E(ﬁj‘ll_Iz

into the page. Note that if the two currents are equal, the magnetic field goes to zero at
the center of the loop.

b

28.26: a) The field still points along the positive x-axis, and thus points into the loop
from this location.

b) If the current is reversed, the magnetic field is reversed. At point P the field would
then point into the loop.

c¢) Point the thumb of your right hand in the direction of the magnetic moment, under
the given circumstances, the current would appear to flow in the direction that your
fingers curl (i.e., clockwise).



28.27: a) B. =, NIJ2a, so=2Bs _ 2(0.024}7m) (0.0580T) _,
N (4 <1077 T-m/A) (800)

b) At the center, B, = u, NI/2a. At a distance x from the center,

B - u,Nla* :(yoNlj a’ _3 a’
2+ a?)? 2a )\ (x* +a*)"? “l(x*+a*)?

3
a 1
B . =3B. means ————5 = —
: (x2 + c12)3/2 2

(x* +a°) =4a®,with a=0.024 m, so x=0.0184 m
_ HeNI 11,(600) (0.500 A)
e g 2(0.020 m)

=942x107 T.

28.28: a) From Eq. (29-17), B

b) From Eq. (29-16),

1, Nla’
B X)=———"-—
) 2(x* +a*)*?

1,(600) (0.500 A) (0.020 m)>

: 5 =134x107" T.
2((0.080 m)* + (0.020 m)?)

— B(0.08 m) =

2 2 2132
28.29: B(x)= LM - 2B() (" +a’)
2(x" +a”) tola
_2(6.39x107 T) [(0.06 m)? + (0.06 m)* > ]
14,(2.50 A) (0.06 m)?

9

=305 A.

encl

28.30: B-dl = i, [,y =3.83x107 T-m=>1]

b) —3.83x107 since dl points opposite to B everywhere.

28.31: We will travel around the loops in the counterclockwise direction.

8) g =0=§B-dl =0.

b) Log =—1, =40 A= § B-dl =—1,(4.0 A)=—5.03x10“T - m,

Q) Iy =1, +1,=—40 A+6.0 A=2.0 A= §B-dl = 1,(2.0 A)
=251x10° T-m.

A =—I+L+1,=40A= ﬁ-di = +1,(4.0 A)=5.03x10° T-m.

Using Ampere’s Law in each case, the sign of the line integral was determined by
using the right-hand rule. This determines the sign of the integral for a counterclockwise
path.



28.32: Consider a coaxial cable where the currents run in OPPOSITE directions.

a) Fora<r<b,lend=I:ifﬁ-di:uOI:Ban:yO]:B:gL].
r

b) For r > ¢, the enclosed current is zero, so the magnetic field is also
zZero.

28.33: Consider a coaxial cable where the currents run in the SAME direction.

=11:>§I§-di=y011:Bzm=y011:>8=”0—11.

a) Fora<r<b, I
2nr

encl

b) For r>c¢, I

e =1 1, :>§B'di:ﬂo([1 +1,)= B2mr = p, (1, + 1)
:B:ﬂo(ll"']z).

2xr

28.34: Using the formula for the magnetic field of a solenoid:

B= gt =L _ £ (600) B00A) _ ) 40n T,
L (0.150 m)

NI o N- BL _ (0.0270 T) (0.400 m)
tol H,(12.0 A)

_ N 716 turns

"L 0400m

b) The length of wire required is 277N =27(0.0140 m ) (116) = 63 m.

=716 turns

28.35: a) B=

=1790 turns/m.

28.36: B= ,uol%

;_ BL
HyN

~ (0.150 T) (1.40 m)

" (47 x 1077 Tm/A)(4000)

=418 A




=3.72x10° A

28.37: a) B=tol =B
2nr (41 27)

o NI sol= 2aB,
2a N
¢) B=ynl =pu,(N/L)I, sol=BL/u,N=237A

b) B, = =249x10° A

28.38: Outside a toroidal solenoid there is no magnetic field and inside it the magnetic
p=tM
2zr
a) r=0.12 m, which is outside the toroid, so B = 0.
B NI 11,(250) (8.50 A)
27 27(0.160 m)
¢) »=0.20 m, which is outside the toroid, so B =0

field is given by

b) r=0.16 m= =2.66x107 T.

28.39: g MoV _ 11,(600) (0.650 A)
2mr 27 (0.070 m)

=1.11x107 T.

28.40: =0.0267 T.

a B ANL_ Ky uoNT 4y (80) (400) (025 A)
2mr 2mr 27 (0.060 m)
b) The fraction due to atomic currents is B' =2 B =13(0.0267 T) = 0.0263 T.

2841 a) If K. =1400= 5= KataNI _ ;_ 207 B _ 22(0.0290 m) (0350T) _

2nr K, u,N 14,(1400)(500)

0.0725 A.

b) If K, :SZOO:I:wl

w200 e = 00195 A,

2842wy pKatoM _ o _2mB _2m(0.2500m) (1.940T) _
27 NI 11,(500) (2.400 A)

b) X, =K, —1=2020.

2021.




28.43: a) The magnetic field from the solenoid alone is:

() B, = unl = 1£,(6000m™) (0.15A)= B, =1.13x10" T.

(ii) But M = X _130 23199 1135107 Ty = M = 4.68x10° A/m.

Hy Hy

(i) B=K, B, =(5200)(1.13x107 T) =5.88 T.

b)

28.44: [ﬂ {Nf/énm} [Csm }:[A-mzl

28.45:

1.60e+03

1.20e+03

= Susceptibility ™’ 200

400

0.00
000 400 800 120 160 200 240 280 320

T(K)

The material does obey Curie’s Law because we have a straight line for temperature
against one over the magnetic susceptibility. The Curie constant from the graph is

= ! 1 =1.55%x10° K-A/T-m.
ty(slope)  14,(5.13)

28.46: The magnetic field of charge ¢’ at the location of charge ¢ is into the page.
F = qv x B' = (qv)i x Ho qY XF _ (qv)i x (2‘0 qv sm@]( k)= (ﬂo q9 Sln@jj
4 T 7

I"2

where 6 is the angle between v’ and 7.

L F [ (800 107° C)(5.00 x 10°C)(9.00 x 10* m/s)(6.50 x 10* m/s) ( %j 5
4rr (0.500 m)? 05))

— F =(7.49x10"° N)j.




_ Hp (1.60x 107 C)(6.00 x 10* m/s)(2.50 A)
21 (0.045 m)

2847: F=qvB= qv('u—olj
2xr

=1.07x10"" N.

Let the current run left to right, the electron moves in the opposite direction,
below the wire, then the magnetic field at the electron is into the page, and the electron
feels a force upward, toward the wire, by the right-hand rule (remember the electron is
negative).

28.48: (a) a=

F _qvBsin® ev( ul
m m B Z( mej
. (1.6 x107"7C)(250,000m/s)(47 x 10”7 Tm/A)(25 A)
(9.11x107'kg)(27)(0.020 m)

=1.1x10" m/s?, away from the wire.

b) The electric force must balance the magnetic force.

ek =elVB
E=vB=vil
27
_ (250,000 m/s)(4m x 1077 Tm/A)(25 A)
27(0.020 m)

=62.5 N/C, away from the wire.

(c) mg =(9.11x107" kg)(9.8 m/s*) ~ 10 N
F,=eE=(1.6x10" C)(62.5N/C)~10"" N

F,~10" F so we can neglect gravity.

grav ?



28.49: Let the wire connected to the 25.0 € resistor be #2 and the wire connected to
the 10.0 € resistor be #1. Both /, and /, are directed toward the right in the figure, so at

the location of the proton /, is ® and /, =©

B =2l and B, =" withr=0.0250 m.
2y 2mr

B, =8.00x10"°T,B,=320x10"Tand B=8, - B,=4.80x10" T

and in the direction ©.

A

B F Force is to the right.

F =qvB =(1.602x107"°C)(650 x 10’ m/s)(4.80x 10~ T) =5.00x107"® N

28.50: The fields add
UoIR?
BZB1 +32 =2B1 :2|:2(R2(:-—x2)3/2:|
(47 x107Tm/A)(1.50 A)(0.20 m)°
[(0.20 m)*+ (0.125 m)* "
F=qgvBsinf
=(1.6x107" C)(2400 m/s)(5.75x10° T) sin 90°
=2.21x107" N, perpendicular to the line ab and to the velocity.

=575x10°T

28.51: a)
#2
N r2
rl \ 100A
45)‘ #1
I0.0Ai L= = . o
Along the dashed line, B, and B> are in opposite directions.

If the line has slope —1.00 then », =, and
B, =B,,s0 B, =0.

tot



— i j k
2852: a) B=lodXF_tod
4T r 4r r

= Z—;%(voz J =,k )= (6.00x10° T)j

Ky 0=y, =0and—%mvoz =6.00x10°T
T r

N 47(6.00x 107 T)(025m) S lms

14,(=7.20x107 C)

Andv, = i\/vg - voy2 —v,.. = i\/(SOO m/s)’ — (=521 m/s)’> = +607 m/s.

L i j ok
- Mg qVoXF gty g M 9 :
b) B(Oa 0.250 m, 0) = ﬁT 4_7(;_7 V(O)x v(iy v((;z =+ 47(; (VOxk vOzl)

4 (<720x107° C)
2

o (0250m) 800m/s =9.2x10™° T.
T r T . m

= B(0,0.250 m, 0) = i‘—omvo =

28.53: Choose a cube of edge length L, with one face on the y-z plane. Then:
e - = B,L’
0=f B-dA=|[  B-da=[| -

a
so the only possible field is a zero field.

Byx: — B,L
i g4 =20 — B, =0,
a




28.54: a)

b) B = —(’uo—lzjf B; = (50—13] (sin@f + cos@A')

2
2rr T,

B= (—OJH—]—Z + £sin@j i+ £cos@ }]
27 noh 2
:E:(ﬂj b L e lr—L 08)]
2z )\ (0.030m)  (0.050 m) (0.050 m)

—

~B- (5_;]((1213 ~33.31L,)i +(161,) f)

- ;‘_0((12)(4.00 A)—(33.3)(2.00 A)) i + (16)(4.00 A)})
T

=-3.72x107° Ti +1.28 x107° Tj.
¢) F=IIxB=1IB j+IIB,i
= (1.00 A)0.010 m)(3.72x107° T) j + (1.28x10 ~° T)i]

=3.72x107° Tj +1.28x1077 Ti; F =1.33x107"N, 16.2° counterclockwise
from +x-axis.



28.55: a) If the magnetic field at point P is zero, then from Figure (28.46) the current /,
must be out of the page, in order to cancel the field from 7, . Also:

R Y N (T PN (UL LU
2ar;, 2 : (1.50 m)

2.00 A.

b) Given the currents, the field at QO points to the right and has magnitude

By=tolh L [ 000A 200A)_, 5,50
2r\r, 1 27{0.500m 1.50 m

¢) The magnitude of the field at S is given by the sum of the squares of the two
fields because they are at right angles. So:

2 2 2
/ I I 6.00 A 2.00 A
B.=B s+ B2 =t ||| (|| 2F + =2.1x10°T.
) (qj (rzj 27\ 0.60 m 0.80 m

28.56: a)

B
(X

b) At a position on the x-axis:

I . I a
B =2t ging=__to
net 2 \/ 2 2 \/ 2 2
nr aNX +a X +a
la
= Bnet - //;0 2\’
m\x" +a
in the positive x-direction , as shown at left.
9)
A
1.20
1.00
/N
Scaled B 0.60 / \
0. / \
0.40 A
g.zi) ——— i
0.00
300 200 —1.00 000 100 200  3.00

x (/)
d) The magnetic field is a maximum at the origin, x = 0.
tola

7.
X

e) When x >>a, B=




28.57: a)
I (X

=

b) At a position on the x-axis:

B, = 2’u—01c050 T al

2mr n\/x2+a2 \/x2+a2
Holx

=B =
net nix2+a2i’

in the negative y-direction, as shown at left.

c)

0.60

040 [ /

0.20 1 / Frm—

Scaled B 0.00

0,20 s /
~0.40 :

—0.60 .
-5.00 -3.00 -1.00 1.00 3.00 5.00
X (/a)

d) The magnetic field is a maximum when:
2
d_B:(): 2C - 2Cx 2:>(x2+a2):2x2:>x=ia
dx X" +a (x2 +a2)

e) When x >>a, B~#  which is just like a wire carrying current 2I.

™



28.58: a) Wire carrying current into the page, so it feels a force downward from the
other wires, as shown at right.

E:IB:I( Hla ]

L lx* +a’

2
L F (600 f) (0400 m) L =1.11x10"° N/m.
L x{(0.600 m) +(0.400 m) )

b) If the wire carries current out of the page then the forces felt will be the
opposite of part (a) . Thus the force will be 1.11x10~> N/m, upward.

28.59: The current in the wires is 7 = &/R = (45.0 V)/(0.500 Q) = 90.0 A. The currents

in the wires are in opposite directions, so the wires repel. The force each wire exerts on
the other is

Fo L _ (2x107 N/A%)90.0 AY(3.50 m)

=0.378 N
2mr (0.0150 m)

To hold the wires at rest, each spring exerts a force of 0.189 N on each wire.

F=hx so k=F/x=(0.189 N)/(0.0050 m)=37.8 N/m

28.60: a) Note that the Earth’s magnetic field exerts no force on wire B, since the
current in wire B is parallel to the Earth’s magnetic field. Thus, for equilibrium, the
remaining two forces that act on wire B must cancel. Assuming that the length of wire B
is L and that wire A carries a current / we obtain
1110 A)L N 1, (LOAY3.0A)L 0
27(0.050 m) 27(0.100 m)

So
0.050 m

0.100 m

b) Note that the force on wire B that is generated by wire C is to the right. Thus, if the
current in wire C is increased, wire B will slide to the right.

I=(3.0A)- 1.5A




28.61:

The wires are in equilibrium, so:

x:F=Tsinfand y:T cosd =mg
mg tan@
IB

ButB=’u—°]:1= 27nr mg tan6 . 27r mg tan 6
2mr luyI lu,

And 7 =[2(0.0400 m) sin(6.00°)] =8.36 x 10~ m.

=>F=IlB=Tsin0=mgtan0=1=

3 2 o
. \/27r(8.36 X107 m) (0.0125 kg /m) (9.80 m /) tan(6.009) _ 5 » ,

Ko

28.62: The forces on the top and bottom segments cancel, leaving the left and right sides:

F=F +F,=—(IB)i +(IIB,)i = 11| - Holsie ; Poluse |§_ Molllue[ 115
27, 2mr, 2r \r. 1,
L o G00M0200m40A) (1 L el oo 0
2n 0.100m  0.026 m

Nuyla’ . Nu,la®
2(x” + 612)3/2 2x°

2 ' 12 12 s
= (N,]%’)[Ng()]sa ] sing = N prl Ta”a sin@
x

28.63: a) x>>a= B= and |7 |=| uxB|=uBsin 0

2x°

_ NNju,al'a® a” cost
2x° '
c) Having x >> a allows us to simplify the form of the magnetic field, whereas

assuming x >> a' means we can assume that the magnetic field from the first loop is
constant over the second loop.

- = Nuyla®
b)U =—pu-B=—uB cosb :—(N’I’zza'z)(%jcosﬁ =
X



Vml)f1_1 :”—‘)I(l—ﬁj,outof‘[hepage.
28.64: B:Ba_Bb:ET P 4q b



28.65: a) Recall for a single loop: B = — 41 Here we have two loops, each of

2()62 + aZ)S/Z
N turns, and measuring the field along the x-axis from between them means that the
"x"1in the formula is different for each case:

2
Left coil: xox+Li=B = ﬂongl —
2 2((x+a/2)* +a*)
2
Right coil:  x—>x— a_.p - UyNla

27 2(x—a/2)? +a*)?

So the total field at a point x from the point between them is:

_ 1NIa® 1 . 1
2 \((x+a/2+d>)* (x—a/2?+a>)*)

b) Below left: Total magnetic field. Below right: Magnetic field from right coil.

J
1.60 f 160
1.20 | 120
Scaled B ) g Scaled B 6 oo R—
0.40 040 —-——-*“”‘M
0.00 0.00
0.00 0100 0200 0300 0400 0.500 Z0.500 -0400 -0.300 -0.200 —0.100  0.00
x (&) x ()
. la*
c) Atp01ntP,x:O:>B=’u°Na ( 21 N 1 23/2]
2 @2y +a)” (-4/2) +d°)
_ pNIla® ( i)yz 1o NI
(5a*/47* 5 a
32 32
d) B= (ij HNT _ (i) 14,(300)(6.00 A) =0.0202 T.
5 a 5 (0.080 m)

dB _ p,Nla’ —3(x+a/2) L 3(x—a/2)
dc 2 \((x+a/2?+a»)"*  (x—a/2)? +a*)"?

_ 4Bl _ u,Nla’ ~3(a/2) N —3(~a/2) 0.
dx |, 2 (@2} +a)?  (-a/2) + )"

d’B _ u,NIa’ -3 L 6+ a/2)*(5/2)

A 2 \((x+a/2 +ad»)?  (x+a/2)* +a*)"

+ -3 N 6(x—a/2)’(5/2)
(x—a/2)* +a*)"?  ((x=a/2)* +a*)""



28.66: A wire of length / produces a field B =% L Here all edges produce a

47 ¥ ai2)?
field into the page so we can just add them up:
x:a/2andl:b:>Bleﬁ:’u°[ b :/‘Ol(éj 1
AT (a)2(a/2) + (B2} ® \a)a*+1?
x=bj2and/=a= B, = a Jo’(ﬁ] I
Ar (b/2N(B/2) + (/2 T \b)\a* +b’

And the right and bottom edges just produce the same contribution as the left and top,
respectively. Thus the total magnetic field is:

B:M_of(éﬂj L 2wl o,
T \a b \/a2+b2 mab

28.67: The contributions from the straight segments is zero since dl xr=0. The
magnetic field from the curved wire is just one quarter of a full loop:
= B = l ('u_olj’
4\ 2R
and is out of the page.

28.68: The horizontal wire yields zero magnetic field since dl x r =0. The vertical

current provides the magnetic field of HALF of an infinite wire. (The contributions from
all infinitesimal pieces of the wire point in the same direction, so there is no vector
addition or components to worry about.)

= B :l (lu_()]j’
2\ 27R

2noR’ L3
27R*

3
3 27[I rzdrzlr—3.
0 R

and is out of the page.

28.69: a) [ = J;JdA :Larrdrdﬁ =o02rx IOR ridr =

b) ()r<R=1I

L [ rdrdo -

encl — 2R3 s 27z-R3
:>§1§~di:82nr:yol L =H, Ir_3 :B:ﬂolrz.
enc R3 27Z.R3

1= B=tol

ity r>R=>I,g=1={B-dl = B2 = 1,
27

encl



2 5> 2
28.70: ayr<a=1.—1I|2|=1 o \= §B -dl = B2ar = ]y =10 |
A a a

a

= B= /xo_b;
2na
Whenr=a, B = 5L] which is just what was found from Exercise 28.32, part (a).
Ta
2 g2
bb<r<c=1,=1- J(AH]=1(1—%)
¢ —b
b—c

—-b* ¢t —r (=7
:>§B dl = B27zr—,uol(1—c _sz—ﬂo[('cz_bz 33:% A-pT

Whenr=5b,B= %, just as in Ex. Exercise 28.32, part (a),and at ¥ =¢, B=0, just asin E>
T
Exercise 28.32, part (b).

28.71: [Ifthere is a magnetic field component in the z-direction, it must be constant
because of the symmetry of the wire. Therefore the contribution to a surface integral over
a closed cylinder, encompassing a long straight wire will be zero: no flux through the
barrel of the cylinder, and equal but opposite flux through the ends. The radial field will
have no contribution through the ends, but through the barrel:

0= jSB dA-= §B dA= [ B dA=[ BdA=B A, =0=B =0.

barrel barrel

28.72: a) r<a=1,,=0=B=0.

b) a<r<b:>1€ncl:[(A‘Hrj (n(rz_a)J (’” -a’)
Aa~>b ”(b _a) ( a)

[ =) o ml (P =d)
(b* —a?)  2nr b -a’
1

=[:>§B-di=32nr=yOI:>B=§L.
wr

:>§B~d?=327rr:,uo

c) r>b=1

encl



28.73:

Apply Ampere’s law to a circular path of radius 2a.

B(Zﬂ:l") = luolencl
2 2
[encl = ] (861))2—%} = 3]/8
a) —a
B= % 5 of ; this is the magnetic field inside the metal at a distance of 2a from
ma

the cylinder axis.

Outside the cylinder, B = gi The value of » where these two fields are equal is
Tr

given by 1/r =3/(16a) and r = 16a/3.

28.74: At the center of the circular loop the current /, generates a magnetic field that is

into the page—so the current /, must point to the right. For complete cancellation the two
fields must have the same magnitude

ol — ol

2zD 2R

Thus, I, =21,



> o ”
28.75: a) I:J'J-dA 2]2 [1——]rdd¢9— 00 j[ ]dr:
S mwa
an(r Y
a’\ 2 44d? .

2 4
4, a__a_jzlo.
b) ForrZa:j;B-di:Bbzr:,uol

a\ 2 4d®

1
:>,uOIO:>B:';°—W°.

encl

12 13
c) For rSa:Ieml—iﬁJ dA 212 (1——] rdr'd@ = 2[02 J'( _jdr,

a a a
ar (v Y P P

N . (1 Y A b .
jo OaZ( 2a2

T2 2 4d
- > 7"2 7"2
d) For r <a=§ B-dl=B2mr =yl =2pt,1,~ (1 = —j
a

Holyr r
= B= ==
Ta 2a

1
At r=a, B =222 for both parts (b) and (d).
2ma




28.76: a) ] _I J- dA I ( (r— a)/i‘)j rdrd@ = 27ij (r— a)/é‘)dr_zn_ba e(r a)/5

0

27xb5(1 - e “°) = I, = 2x(600 A/m) (0.025 m) (1 — e**"*)) =81.5 A.
b) Forr>a= Efﬁd? =B2nr = u,l,., = pyl, = B =’u°—]°.
2mr

) r<a=I(r)= jJ dA= j(b o “Wj rdr'do

.
s '
= ZEbL "y = 2xbde! " "®

0

/e
= I(r)=2abd(e" ™" — e *) =2abde (e - 1) = I(r) =1, Ee—l)
e

/5_1)
r/d r/d
- . e’ -1 I(e"° -1
d) For rSa2>§Bdl :B(r)znr:luolencl ﬂOIOE alé 1; =B = Z(;”:)((ea/ﬁ _1))

e) At r=56=0.025m= B= Holy (fa D _ 4B134) oogoe/o_ozls)
2r0(e”® —1)  27(0.025 m) (e —1)

=1.75x107* T.
Holy (e =1) _ H4y(B1.5A)

At r=a=0.050m= B = —— = =3.26x10" T.
2 (e —1)  22(0.050 m)
I 81.5A
At r=2a=0100m= B = *olo _ _#l ) 163x10° T.
2 27(0.100 m)
2
28.77: [ Bdv=| A [ ! d(x/a)

_Ooz(xZ +a2)3/2 _OO((.X/CZ)Z +1)3/2

/2

[ © dZ 0 [
= ﬂi"’_wm j— J._OO Bxdx ﬂ; J’_ﬂ-/ coS ede_ ILLO (Slnﬁ) _ IL[OI,
-/2

where we used the substitution z =tan 0 to go from the first to second line. This is just
what Ampere’s Law tells us to expect if we imagine the loop runs along the x-axis
closing on itself at infinity: §B ~dl = p,l.



28.78: § B-dl=0 (no currents in the region). Using the figure, let B = Bof for
y<0and B=0for y>0.
[B-ai=B,L-B,L=0,

abcde

but B,=0.8,L=0,but B, #0. This is a contradiction and violates Ampere’s Law. See
the figure on the next page.

Y

[Hp R I
Y

Y

Y

28.79: a) Below the sheet, all the magnetic field contributions from different wires add
up to produce a magnetic field that points in the positive x-direction. (Components in the
z-direction cancel.) Using Ampere’s Law, where we use the fact that the field is anti-
symmetrical above and below the current sheet, and that the legs of the path
perpendicular provide nothing to the integral: So, at a distance a beneath the sheet the
magnetic field is:

1

encl

:nL1:>§B-di=BzL=ﬂonL1:>B:”OT”I,

in the positive x-direction. (Note there is no dependence on a.)
~ <

(& @ © ) () [0 (]

L
——

b) The field has the same magnitude above the sheet, but points in the negative x-
direction.



28.80: Two infinite sheets, as in Problem 28.79, are placed one above the other, with

their currents opposite. B N
P
[(&) (&) (o) (& (o) (&) (o]

[0 X0 X X X0 X0 V]
S

P

€

a) Above the two sheets, the fields cancel (since there is no dependence upon the

distance from the sheets).
b) In between the sheets the two fields add up to yield B = ynl, to the right.

c) Below the two sheets, their fields again cancel (since there is no dependence upon

the distance from the sheets).

28.81: M,, = (U, p)#Featoms/m®) = (u, . ;)N ,#Femoles/m?)
— MFemmol(Fe)

pFe
=M e = (luaomo e)N — = Hatom of Fe =
Fe t f Fi A mmo[(Fe) f Fe NApFe
(6.50 x 10*A/m)(0.0558 kg /mol)
= luatom of Fe — 23 3 3
(6.02 x 10% atoms/mol)(7.8x 10° kg/m?)
=7.72x107 A-m".

7.72x107% A-m’
= Hatomof Fe = 927 x 10,24 A m2 U = 00833:”3




28.82: The microscopic magnetic moments of an initially unmagnetized ferromagnetic
material experience torques from a magnet that aligns the magnetic domains with the
external field, so they are attracted to the magnet. For a paramagnetic material, the same
attraction occurs because the magnetic moments align themselves parallel to the external
field.

For a diamagnetic material, the magnetic moments align anti-parallel to the
external field so it is like two magnets repelling each other.

b) The magnet can just pick up the iron cube so the force it exerts is:
F, =m,g=ppag=(78x10° kg/m*)(0.020 m)’ (9.8 m/s*) = 0.612 N.

But FFe :IaB:luF—EB:O.612 N=>—= 0612N

a a Hpe
So if the magnet tries to lift the aluminum cube of the same dimensions as the iron
block, then the upward force felt by the cube is:

F, = taB P 610 N = K g1p N 2 1000022
a

luFe Fe

0.612N=4.37x10"* N.

But the weight of the aluminum cube is:
W=m,g=p,ag=2.7x10’ kg/m?*)(0.020 m)*(9.8 m/s*) =0.212 N.

So the ratio of the magnetic force on the aluminum cube to the weight of the cube is

437x10™* N
0212N

=2.1x107, and the magnet cannot lift it.

c) If the magnet tries to lift a silver cube of the same dimensions as the iron
block, then the DOWNWARD force felt by the cube is:

B K _ s
=l Hae g g1n N = Baeg g1 2 (10022:6x107) 5 61
luFe KFe 1400

=437x10* N.

But the weight of the silver cube is:
W=m,g=p,ag=(»105x10" kg/m*)(0.020 m)’(9.8 m/s*) = 0.823 N.

So the ratio of the magnetic force on the silver cube to the weight of the cube is

x107* — 5 .
S =5.3%107*, and the magnet’s effect would not be noticeable.




28.83: a) The magnetic force per unit length between two parallel, long wires is:
2

£=IB=,U0]2:,U0 I_o __* (K]zzﬂo &2

L 27d 27d\\2) 4nd\R) 4md \RC)’

where % is the rms current over the short discharge time.

2 2 2
Ezﬂa:?ua:—’uo (&j :>a=—’u°Q°2 2:>v0:atzaRCz—’quO .
L L 4rd \ RC 47 dR"C 47 dRC
2 2 -6 2
by v, = Ho( SV OV _ 14,(2.50 x 107 F) (3000 V) 0347 mfs.

4mMARC ~ 4mMdR 47 (4.50x 107 kg/m)(0.03 m)(0.048 Q)
c) Height that the wire reaches above the original height:
Y _(0347m/s)*

—=6.14x10" m.
2g  2(9.80 m/s?)

%mvo2 =mgh=h=

28.84: The amount of charge on a length Ax of the belt is:

AQ:LAxajlzgngasza.
At At

O

Approximating the belt as an infinite sheet:
g =l _ Hvo
2L 2

3

out of the page, as shown at left.



2Qrdr

2

28.85: The charge on a ring of radius 7 is ¢ = 04 = o27rdr = . If the disk rotates

a
at n turns per second, then the current from that ring is:
I _Aq _ ng = 2Qn2rdr 4B = Mol :ﬂZanrdr _ ,uoandr.
At a 2r 2r  a a

So we integrate out from the center to the edge of the disk to find:

B_J'”dB_J"’/Joner_:uonQ
o g2 g

28.86: There are two parts to the magnetic field: that from the half loop and that from the
straight wire segment running from —ato a.

o1 B wola’
B, (ring) = EBloop ST ra )
. . : ol dl X : Holaxsing d¢
dB (ring) =dB sin@ sin ¢ = S =
(ring) ¢ dr (x> +a’) (x° +c12)1/2 Ar(x’ +az)3/2

s

Holax

= B (ring) = I: dB,(ring) = : 4‘7‘;(])‘? _S:I;?;ls?z _ e cos¢0
Holax

o 21(x* +a?)*?’

B (rod) = %, using Eq. (28.8). So the total field components are:
_ Hola®
and
B Hola x? _ wola’
- 27zx(x2 +az)1/2 ( - x? +a2j_ 27zx(x2 +c12)3/2 ’



Capitulo 29



29.1: ®, =NBA,and @, = NBA cos 37.0°= AD ; = NBA(l - cos 37.0°)
AD,  NBA(l - cos 37.0°)

=>&=-— =
At At
__ (80)(1.10 T)(0.400 m)(0.25 m)(1 — cos 37.0°)
0.0600 s
= ¢ =29.5V.

29.2: a) Before: ®, = NBA=(200)(6.0x10" T)(12x107* m?)
=1.44%x10" T-m?; after: 0

Acb . -5 ) -3 2
b) |g| _ B _ NBA _ (200)(6.0x10™ T)(1.2x10™ m~) _36x10° V.
At At 0.040 s
AD
29.3: a) ¢= B:%:UQ:(QJR:QR:NBA:Q:&.
At At At

b) A credit card reader is a search coil.
c¢) Data is stored in the charge measured so it is independent of time.

29.4: From Exercise (29.3),
0= NBA _ (90)(2.05T)(2.20x 107 m?)

=2.16x107° C.
R 6.80Q+12.0Q

29.5: From Exercise (29.3),
0= NBA ~ B _OR _(3.56x 107 C)(60.0 Q +45.0 Q)
R NA (120)(3.20 x107* m?)

=0.0973 T.

Nd®,
dt
= £=NA((0.012T/s) + (1.2x107* T/s*)*)

=0.0302 V + (3.02x107* V /s¥)r’.

29.6: a) &=

- NA%(B) = NA%((0.0IZ T/s)t +(3.00x107° T/s*)*)

b) At t=5.00s = £=0.0302 V + (3.02x10™* V/s*)(5.00 5)* = +0.0680 V

& 0.0680 V

=1=—=
R 600 Q

=1.13x107* A



0 <t < T; zero otherwise. .
b) gan‘ct:Z
2

2nNAB, T 3T
C) Epax = occursatf=—andt =—.
T 4 4

d) From 0 <¢<Z, B is getting larger and points in the + z direction. This gives a
clockwise current looking down the — z axis. From £¢ <7, B is getting smaller but still
points in the + z direction. This gives a counterclockwise current.

dd
dr

29.8: a)

Eind =4 (B, A)

8ind

= A'sin 60°d_B = A sin 6001((1 4 T)e_0'°57sil‘)
dt dt

= (?)(sin 60°)(1.4 T)(0.057s ™ )e 7"

= 7(0.75 m)*(sin 60°)(1.4 T)(0.057 s~ )e 7"

=0 12 V e—0.057 sl

1 1
b) e=—¢,=—(0.12 V
) 1o %0 10( )

%(0.12 V)=0.12V e %7+
In(1/10)=-0.057 s't — ¢ = 40.4s
c) B is getting weaker, so the flux is decreasing. By Lenz’s law, the induced current

must cause an upward magnetic field to oppose the loss of flux. Therefore the induced
current must flow counterclockwise as viewed from above.

Lind



29.9: a) c=2mand A=m’so A=c’/4rx
®, = BA=(B/4rn)c?

do B dc
i
dt 27 dt

At £=9.0s,¢=1.650m —(9.05)(0.120s) = 0.570 m
& = (0.500 T)(1/27)(0.570 m)(0.120 m/s) = 5.44 mV
b)

Flux ® is decreasing so the flux of the induced
current
@, , 1s ® and [ is clockwise.
29.10: According to Faraday’s law (assuming that the area vector points in the positive z-
direction)
A® 00— (1.5T)7(0.120 m)*

E=— = = =+ 34 V(counterclockwise)
At 2.0x10" s

29.11: @, = BA cos ¢; ¢ is the angle between the normal to the loop and B ,so ¢=53°

do
le] =‘ dtB = (4 cos ¢)(dB/ dt) = (0.100 m)* cos 53°(1.00 x 10> T/s) =6.02x10°° V
29.12: a)

A, d . .
|| = i E(NBA cos wt) = NBA w sin wt and 1200 rev/min =20 rev/s, so :

= ¢, . = NBAw = (150)(0.060 T)z(0.025 m)* (440 rev/ min)(1 min /60sec)(27 rad /rev)

b) Average ¢ = zgmax = z0.814 V=0.518V.
7

T

29.13: From Example 29.5,
_ 2NwBA _ 2(500)(56 rev/s)(2z rad/ rev)(0.20 T)(0.10 m)

T T

=224V

av



D
29.14: e=— ddtB = —%(NBA coswt) = NBAw sinot = &, = NBAw

£ 240x1072V

max

= = 5 =10.4 rad/s.
NBA  (120)(0.0750 T)(0.016 m)

29.15:

Induced ﬁ

>
B (decreasing)

Emf I~
g g

L
Change in B

29.16: a) If the magnetic field is increasing into the page, the induced magnetic field
must oppose that change and point opposite the external field’s direction, thus requiring a
counterclockwise current in the loop.

b) If the magnetic field is decreasing into the page, the induced magnetic field must
oppose that change and point in the external field’s direction, thus requiring a clockwise
current in the loop.

c) Ifthe magnetic field is constant, there is no changing flux, and therefore no
induced current in the loop.

29.17: a) When the switch is opened, the magnetic field to the right decreases. Therefore
the second coil’s induced current produces its own field to the right. That means that the
current must pass through the resistor from point a to point b.

b) If coil B is moved closer to coil 4, more flux passes through it toward the right.
Therefore the induced current must produce its own magnetic field to the left to oppose
the increased flux. That means that the current must pass through the resistor from point »
to point a.

c) Ifthe variable resistor R is decreased, then more current flows through coil 4, and
so a stronger magnetic field is produced, leading to more flux to the right through coil B.
Therefore the induced current must produce its own magnetic field to the left to oppose
the increased flux. That means that the current must pass through the resistor from point b
to point a.



29.18: a) With current passing from a — b and is increasing the magnetic, field

becomes stronger to the left, so the induced field points right, and the induced current
must flow from right to left through the resistor.
b) If'the current passes from b — a, and is decreasing, then there is less magnetic

field pointing right, so the induced field points right, and the induced current must flow
from right to left through the resistor.
c¢) Ifthe current passes from b — a, and is increasing, then there is more magnetic

field pointing right, so the induced field points left, and the induced current must flow
from left to right through the resistor.

29.19: a) @, is © and increasing so the flux @, , of the induced current is clockwise.
b) The current reaches a constant value so @, is constant. d® , / df =0 and there is
no induced current.
c) @, is © and decreasing, so @, , is © and current is counterclockwise.

29.20: a) ¢=vBl=(5.0m/s)(0.750 T)(1.50 m)
=56V

b) (i)

~

+q.—>F

Let g be a positive charge in the moving bar. The
magnetic force on this charge F = g¥ x B, which
points upward. This force pushes the current in a
counterclockwise direction through the circuit.
(i1) The flux through the circuit is increasing, so the induced current must cause a
magnetic field out of the paper to oppose this increase. Hence this current must flow in a
counterclockwise sense.

lind

® .
Y B A
] [
c) e=Ri ]
_E_30V oA



29.21: [vBL]= E Tm} = [? CNHSI m} = {N—Cm} = E} =[v].

29.22: a) &=vBL =(5.00 m/s)(0.450 T)(0.300 m) = 0.675 V.

b) The potential difference between the ends of the rod is just the motional emf
V' =0.675V.

¢) The positive charges are moved to end b, so b is at the higher potential.
_V _0675V _225V

d E=-= =225+
L 0300m m
e) b
2923: ) s=vBL—v=—-o_ 000V esgm/s
BL  (0.850 T)(0.850 m)
by 12520620V her7al
R 07500

c) F=ILB=(0.827 A)(0.850 m)(0.850 T) =0.598 N, to the left, since you must
pull it to get the current to flow.

29.24: a) & =vBL = (7.50 m/s)(0.800 T)(0.500 m) = 3.00 V.

b) The current flows counterclockwise since its magnetic field must oppose the
increasing flux through the loop.
eLB  (3.00 V)(0.500 m)(0.800 T)

c) F=ILB= =0.800 N, to the right.
R 1.50 Q
d) P, =Fv=(0.800N)(7.50 m/s)=6.00 W.
2 2
p. =% = G00V)” =6.00 W. So both rates are equal.

e R 1.50 Q



29.25: For the loop pulled through the region of magnetic field,
a)

F
Fy

oY

b)

1y ¥

272
Where & =vBL=IR= I, =%and F,=ILB = VBRL .

29.26: a) Using Equation (29.6): & = vBL = B = - = 0450 V ~0.833T.
vL (4.50 m/s)(0.120 m)
b) Point a is at a higher potential than point b, because there are more positive

charges there.

dd d d dl —
29.27: ¢=—2L =" (BA)=— IA) = ynA— and¢ E -dl = =
= (BA) =~ (pgnlA) = pynd” - and

& ponddl  pnrdl
2o 2w di 2 di
(900 m™)(0.0050 m)
2
b) r=1.00cm=E=339x10" V/m.

E =

a) r=050cm= E =% 60 A/s)=1.70x10"* V /m.




a0, _ 9B _ 2 9B
dt dt
I do, mdB_rdB
2, dt 2modt 2 dt

29.28: a)

b) E=

c) All the flux is within » < R, so outside the solenoid
1 db, 7R’ dB _R’dB

E= = == =
2mr, dt  2m, dt 2, dt

29.29: a) The induced electric field lines are concentric circles since they cause the
current to flow in circles.
b) £ = 1 oe 1 do, _ 1 Ad_Bzzd_Bzo.IOOm
2mr 2o dt 2w dt 2 dt 2
= E=1.75x10"" V/m, in the clockwise direction, since the induced magnetic field
must reinforce the decreasing external magnetic field.

2 2
o 1=5 =7 B _7OI0M 43501 /5)=2.75x10 A,
R R dt 4000

(2.75x107" A)(4.00 Q)

2
e) Ifthe ring was cut and the ends separated slightly, then there would be a potential
difference between the ends equal to the induced emf:

&=’ ‘2—? = 7(0.100 m)*(0.0350 T /s) =1.10 x 107 V.

(0.0350 T/s)

d) e=IR=1IR,,, /2= =5.50x10"* V.

() .
29.30: g:d B :i(BA):i(ﬂonlA):ﬂonAﬂjﬂzE 27
dt dt dt dt dt  pu,nA

. dl _ (8.00x10™ V/m)27(0.0350) _
dr 1,(400 m™)7(0.0110 m)*

921A/s.



29.31: a)
W= jF -dl = gE27R = (6.50 x107° C)(8.00x 10° V/m)27(0.0350 m) =1.14x 107" J.

(b) For a conservative field, the work done for a closed path would be zero.

(©) ft;E -l = - dj;B = EL= BA%. A is the area of the solenoid.

For a circular path:

E2mr = BAj = constant for all circular paths that enclose the solenoid.
t
So W = qE2nr =constant for all paths outside the solenoid.

W =1.14x10" Jif r =7.00 cm.

NA(B, - B,
29.32: ¢=— NA®, _ _ (B, - B) _ NAp,nl

At At At
 4,(12)(8.00 x 10™*m?)(9000 m™')(0.350 A)
0.0400 s

=£=950x10"* V.

29.33:i, =¢ do
dt

E

=(3.5x107" F/m)(24.0x10° V-m/s*)¢
i, =21x10"° A givest=5.0s

-12
29.34: According to Eqn.29.14 ¢ = b 312'9X104 A - =
(d(DEj 48.76x10° V-m/s*)(26.1x107 s)
dt

2.07 x 107" F/m. Thus, the dielectric constant is K =< =2.34.

50_



2935: ) j, =y 9E gt e 0280A
di"g,d A 7(0.0400 m)

. 2
b) d_E:J_D:M:ngxlOlZ V/m-s.
e &, &
c) Using Ampere’s Law
r<R:B=%0"; :ﬂM(OQSO A)=7.0x107 T.
27 R 27 (0.0400 m)

d) Using Ampere’s Law

=557A /m’.

r<R:B=t" oMo (00100M) o003 5u107T.
27R> " 27 (0.0400 m)

=5.99x107" C.

4 2
2936: a) 0 =Cv =| & |y = GT05(E00x107 m')(120V)
d 2.50x107° m

b) 49 _ i, =6.00x107° A.
dt

9 Jjy =gfi—f=1<go K:)A =lj=jc =i, =i =6.00x107 A.
29.37:a)q =it =(1.80x 107 A) (0.500x10~° s) =0.900x 10~ C
p=C o4 0900x107C ;0 165 v/m.
g  Ag, (5.00x107" m7)eg,
=V =Ed =(2.03x10° V/m) (2.00x 10~ m) = 406 V.
b) dE _ i, _ 1.80x107° A
dt  Ag, (5.00x10"m*)g,

=4.07x10"V/m-s, and is constant in time.

&) =z, ‘2_E = £,(4.07x 10" V/m-s) =3.60 A/m’
t

=i, =j,A=(3.60 A/m>) (5.00x10* m*>)=1.80x 10" A, which is the

same as i,.



pl (2.0x107° Qm)(16 A)
2938: a) E=p] ==
) i A 2.1x10° m?

-8
by SE_d Pl pdl 20107 4500 46 =38 7/m-s.
dt di\4 ] 4dt” 21x10°m

=0.15V/m.

) Jjp 280%280(38 V/s-8)=34x10" 4/m’.

d)i,=j,A=(3.4x10"" A/m*) (2.1x10° m*)=7.14x107"° A
ol w1y (7.14x107° A)
2mr 272(0.060 m)

negligible contribution. B, = Ade _Hy (6 A)
2z 27 (0.060 m)

= B, =2.38x107*" T, and this is a

=533 x107° T.

29.39:1n a superconductor there is no internal magnetic field, and so there is no changing
flux and no induced emf, and no induced electric field.
0= B-dl =yl =p, (. +1,)=pd. =1, =0,

Inside encl

material

and so there is no current inside the material. Therefore, it must all be at the surface of the
cylinder.

29.40:Unless some of the regions with resistance completely fill a cross-sectional area of
a long type-II superconducting wire, there will still be no total resistance. The regions of
no resistance provide the path for the current. Indeed, it will be like two resistors in
parellel, where one has zero resistance and the other is non-zero. The equivalent
resistance is still zero.

29.41: a) For magnetic fields less than the critical field, there is no internal magnetic

field, so:
Inside the superconductor: B= 0, M=-— B =— ©.1307)¢ =—(1.03x10° A/m)f.
Hy Hy

Outside the superconductor: B=B = (0.130T)f, M =0.
b) For magnetic fields greater than the critical field, y =0 = M =0 both inside

and outside the superconductor, and B=Bo= (0.260 T)tc , both inside and outside the
superconductor.



29.42: a) Just under B. (threshold of superconducting phase), the magnetic field in the
—_ B -3 : A
material must be zero, and M = — B =— 5x107 Ti =—(4.38x10* A/m)i.
Hy Ho
b) Just over B.2 (threshold of normal phase), there is zero magnetization, and

B=B. =(50T).

29.43:a) The angle ¢ between the normal to the coil and the direction of B is 30.0°.
el do,

For t<0and¢>1.00s,dB/dt=0,|&|=0and [ =0
For 0 <7 <1.00s, dB/dt = (0.120 T)x sin ut
| & |= (Nr*)m(0.120 T)sin it = (0.9475 V) sin zt

=(Nm*)dB/dtand I =| ¢ |/R.

R for wire : R =%=L€; p=1.72x10"8Q-m, r=0.0150x10"m
s

L= Nc=N2mr =(500) (27) (0.0400 m) =125.7 m
R, =3058 Q and the total resistance of the circuit is
R =3058Q + 600 Q=3658 Q

I=|¢|/R=(0.259 mA)sin x¢

I

0.259 mA +

05s 1.0s t

b)

B increasing so @, is © and increasing
®,, 1s®so ! isclockwise



29.44: a) The large circuit is an RC circuit with a time constant of
7=RC=(10Q) (20 x10°F) = 200us. Thus, the current as a function of time is

100 V) 5
i = e 200ss
10Q
At t =200us, we obtain i = (10 A) (e”')=3.7 A.

b) Assuming that only the long wire nearest the small loop produces an appreciable
magnetic flux through the small loop and referring to the solution of Problem 29.54 we

obtain

c+a /,[Olb

Hoib a
D, = dr = In(1+—
i -L 27 27 ( c)

So the emf induced in the small loop at ¢ = 200 s is

- 4r x107 -¥2) (0.200 m
dt 2r dt 27 200x107s

Thus, the induced current in the small loop is i’ = £ = m%m =54 uA.

¢) The induced current will act to oppose the decrease in flux from the large loop.

Thus, the induced current flows counterclockwise.
d) Three of the wires in the large loop are too far away to make a significant
contribution to the flux in the small loop—as can be seen by comparing the distance ¢ to

the dimensions of the large loop.

c



29.45: a)

=0.4 V/m.
2 0.50s

\
0.8
B(T) 0.4
0.0 N
0.5 1.0 L5 2.04(s)
b)
\
16
8
I(A)
0 >
0.5 1.5 i(s)
-8
B B (0.50m)0.80T
g, =& - LydB_ 1 .d8_rds_(050m)
N2mr 2rm dt 2 dt 2 dt
29.46: a) =5 L 9Ps 1 d(BAcosw) Bdwsinof
R R dt R dt R
2 42 .2 2
b) P:IZR:B A"w” sin a)t'
R
2 .
¢) u= IA:W

. . B2A2 s 2
d) 7= uBsing = uBsinot = %‘Ut

2A2 2,22 ¢ ] )
e) P=rw = Ba)%, which is the same as part (b).



29.47: a) ®, = BA =00 g2 = H
2a 2

by £=- 9P =iR=>_i(ﬂ0maj:_ poradi o di_ 2R

de\ 2 2 dt dt Uo7t
: ] 2R : -t JTa
¢) Solving ﬂ =—dt for i(?) yields i(z) =i e R ugm)
i o7
d) We want i(r) =i,(0.010) =ije """ = In(0.010) = — #( 2R/ u, ma)

s p o H™ 1 0.010) = — 207050 ™)
2R 2(0.10 Q)

e) We can ignore the self-induced currents because it takes only a very short time for
them to die out.

In (0.010) = 4.55x10s.

29.48: a) Choose the area vector to point out of the page. Since the area and its
orientation to the magnetic field are fixed, we can write the induced emf in the 10 cm
radius loop as
£=— o, =—A, az, =-m(0.10 m)zﬂ
dt dt dt
After solving for % and integrating we obtain
107

7(0.10 m)*

=107*[(20.0 V) — (4.00 V/s)¢]
B.(t=2.00s)— B,(t=05)=— jj [(20.0 V) - (4.00 V/s)]dt.

Thus,
10?m™

B. =(~0.800 T) — [(20.0 v) 2.00 5) - (2.00 V/5) (2.005)*|=—0.902 T
b) Repeat part (a) but set £=—(2.00x107 V) + (4.00x10™* V/s) t to obtain
B =-0.698T
c¢) In part (a) the flux has decreased (i.e., it has become more negative) and in part (b)
the flux has increased. Both results agree with the expectations of Lenz’s law.



29.49:a) (i) |¢|= ‘d(DB

dt

A

I
dx

b

Consider a narrow strip of width dx and a distance x from
the long wire.
The magnetic field of the wire at the strip is B = x4, /27x.
The flux through the strip is

d® , = Bbdx = (u,1b/27) (dx/x)

Holb
2

The total flux through the loop is @, = J' dD, = ( J‘r+a dx

®, :(,uolbj ln(r + aj
27 r

dCDB_d(DBﬂ_yOIb(_ a ]v

r X

dt dt dt 2r& r(r+a)
&)= Mo laby
27r(r + a)

(1) & = Bvl for a bar of length / moving at speed v perpendicular to magnetic field

r+a

The emf in each side of the loop is



29.50:a) Rotating about the y —axis:
_do,

max

= wBA = (35.0 rad/s) (0.450 T) (6.00 x 10 >m) = 0.945 V.

b) Rotating about the x —axis: dfl)tB =0=>¢=0.
c) Rotating about the z —axis :

d®
£, = dtB = wBA = (35.0 rad/s) (0.450 T) (6.00 x 10 >m) = 0.945 V..

29.51: From Example 29.4, ¢ = w BA sin wt; ¢, = wBA
For N loops, ¢, = NoBA

max

N=400,B=15T, 4=(0.100m)*, &, =120V

max

o =¢,. |NBA=(20rad/s) (1 rev/2z rad) (60 s/1min) = 190 rpm

29.52: a) The flux through the coil is given by NBA cos(wt), where N is the number of
turns, B is the strength of the Earth’s magnetic field, and @ is the angular velocity of the
rotating coil. Thus, & = @ NBA sin(wt), which has a peak amplitude of ¢, = @ NBA.

Solving for 4 we obtain
. 9.0V 18 m
oNB (30 rev/min) (1 min/60s) (27 rad/rev) (2000 turns) (8.0 x 107 T)

b) Assuming a point on the coil at maximum distance from the axis of rotation we
have

A 18 m? ) .
v=ro=.—w= (30 rev/min) (1 min/60 s) (2r rad/rev) = 7.5 m/s.
n
AD -’ : ?
29531 2) c=—2Pn __pAM__ p=m 950 T) 0 0650/2m)” _ 126 v,
At At At 0.250s

b) Since the flux through the loop is decreasing, the induced current must produce a
field that goes into the page. Therefore the current flows from point a through the
resistor to point b .



29.54: a) When [ =i= B = %, into the page.
ar

b) dd, = Bdd=2"Lar.

27
b Mol o dr il
O,=|db,=—"—| —=——1In(b/a).
c) @, L B Py L P by n( /a)
dd M, L di
d) e=—2L="In(b/a )—.
) g ap My,
0.240
e) €= Mln(0.360/0.120) (9.60 A/s)=5.06x10"" V.
Vs
29.55: a)
‘ _
X X X X X
B L I
X X X X X
Y m
vBL

g:vBL:IR:I:T,andF—FB:F—ILB:ma

[F—]LB) F VB’
S>a=|——|=

m m mR

dv_F vBL

E m mR
calculated in part (b).
A

= () =, (1 — e ®L ’”R)), where v; is the terminal velocity

1.00

0.80 /
0.60 /

normalized velocity /
0.40 /

0.20

0.00 >
0.00 1.00 2.00 3.00 4.00 5.00 6.00

normalized time

_—

b) The terminal speed v, occurs when the pulling force is equaled by the magnetic

LB L*B?
force: F, = ILB :(VfR jLB =L =F=v, :%_




29.56: The bar will experience a magnetic force due to the induced current in the loop.
According to Example 29.6, the induced voltage in the loop has a magnitude BLv, which

opposes the voltage of the battery, . Thus, the net current in the loop is / = <=2, The
acceleration of the bar is g = £ = 25000 - (e B0 18
a) To find v(¢),set & =a = % and solve for v using the method of separation
of variables:
v d LB 822 .
j—v: t—dt%v:i(l_e MRI):(IOm/S)(l_e“S).
0(¢ —BLv) mR BL

Note that the graph of this function is similar in appearance to that of a charging
capacitor.

b) I=¢/R=24A;F=ILB=288N;a=F/m=32m/s’

c) When

_[12V—(1.5T) (0.8 m) (2.0 m/s)] (0.8 m) (1.5 T)
- (0.90 kg) (5.0Q)

d) Note that as the velocity increases, the acceleration decreases. The velocity will

ST = 10 m/s, which makes the

=2.6m/s’

v=2.0m/s,a

asymptotically approach the terminal velocity - =

acceleration zero.

29.57: £=Bvl;B=8.0x10"T,L=2.0m

Use ZF = ma applied to the satellite motion to find the speed v of the satellite.
2

e —m Yy r =400x10° m + R,
r

2

G
r

v = 1/G’”E = 7.665x%10° m/s
r

Using this vgives e =12V

29.58:  a) According to Example 29.6 the induced emfise = BLv = (8 x 10°T)
(0.004 m) (300 m/s) =96u V ~ 0.1 mV. Note that L is the size of the bar measured in a

direction that is perpendicular to both the magnetic field and the velocity of the bar. Since
a positive charge moving to the east would be deflected upward, the top of the bullet will
be at a higher potential.

b) For a bullet that travels south, the induced emf is zero.

c¢) In the direction parallel to the velocity the induced emf is zero.



29.59:  From Ampere’s law (Example 28.9), the magnetic field inside the wire, a
distance 7 from the axis, is B(r) = u, Ir/2x R*.

dr

Consider a small strip of length /¥ and width dr that
is a distance r from the axis of the wire.
The flux through the strip is
w
oy ar

d® , = B(r)W dr =
i ") g 27R?

The total flux through the rectangle is

MW\ (r HoIW
O, =dD, = rdr=——
g J g (ZERZ j L 4r

Note that the result is independent of the radius R of the wire.



29.60: a) @, = BA=Byar,"(1-3(1/t,)* + 2(t/t,)*).
do,

bye=-— ——307%2%(1—3(1/%)2+2(t/fo)3)=—&]%°2(—6(t/fo)+6(1/%)2)

2 2
jg—wo—n%((Lj —(LJJSO att=5.0><1073$n
t, t, f,

2 -3 \? -3
. __ 6B,7(0.0420 m) {(5.0 x10 sj ~ (5.0 x10 Sj] _ 0.0665 V., counterclockwise

0.010s 0.010s 0.010s
izt Ry =rtR=5,= 29V po_nna
i 3.0x107 A

total

d) Evaluating the emfat 1 =1.21x107 s, using the equations of part (b):
& =-0.0676 V, and the current flows clockwise, from b to a through the resistor.

2
e)g=0:>0=[(iJ [in:n:i:n:zo ~0.010s.
tO tO tO

29.61: a)de=(VxB)-dr =vBdr = ’tho—lvdr = 8”0—]‘}.[61%@ _ by ln(d i Lj.

T 27 4 r 2z d

b) The magnetic force is strongest at the top end, closest to the current carrying wire.
Therefore, the top end, point a, is the higher potential since the force on positive charges
is greatest there, leading to more positives gathering at that end.

c) If the single bar was replaced by a rectangular loop, the edges parallel to the wire
would have no emf induced, but the edges perpendicular to the wire will have an emf
induced, just as in part (b). However, no current will flow because each edge will have its
highest potential closest to the current carrying wire. It would be like having two batteries
of opposite polarity connected in a loop.

29.62: Wire A:§x§=0:>3=0.
Wire C: & = vBL sin ¢ = (0.350 m/s)(0.120 T)(0.500 m) sin 45° = 0.0148 V.
Wire
D:& = vBL sin ¢ = (0.350 m /s)(0.120 T)ﬁ(o.soo m) sin 45° =0.0210 V.



29.63: a)de = (v x ;%) -dr =ar Bdr = ¢ = .LL wrBdr = %wLZB

_ (8.80rad/sec)(0.24 m)*(0.650 T)

2
b) The potential difference between its ends is the same as the induced emf.
c) Zero, since the force acting on each end points toward the center.

=0.164 V.

center

&
AV, = "z“a) =0.0410 V.

29.64: a) From Example 29.7, the power required to keep the bar moving at a constant

s _ (BLv)? _ (BLv)> _ [(025T)(3.00m/s)]>
velocity is P=-—~=> R ="~ = oW =0.090 Q.

b) Fora 50 W power dissipation we would require that the resistance be
decreased to half the previous value.
c) Using the resistance from part (a) and a bar length of 0.20 m

_(BLv)’ _[(0.25 T)(0.20 m)(2.0 my/s)]’

P = =0.11W
R 0.090 Q
2 2
29.65:a) 1=5 =8 p_ gt
R R
b)
2 2 ! 2 2
F:ma:m@:VBa :>J- d\: :Ba J‘tdt,jv:voe—rwa/mm:ﬂj
dt R Yoy mR Yo dt
X 00 ’ 22 R ’ 2 2 - R
J.de':VOJ.Oe_t(Ba/mR)dt':x:_}ZZV;) :e—t(Ba/mR) :mzvg.
a o Ba

29.66: a) &= xB)-L=(4.20m/s)i x ((0.120 T)i - (0.220 T)j - (0.0900 T)k)- L
= ¢ =((0.378 V/m)} - (0.924 V/m)k)- ((0.250 m)(cos 36.9%F +sin 36.9°}))
= & = (0.378)(0.250)sin 36.9° = 0.0567 V.

¥ l +

X n




do dB dB dB
29.67: Atpoint aie=—>t = AL 52 and F=gE=qg-2- =29 {5 the
dt dt dt 2mr 2 dt

left. At point b, the field is the same magnitude as at a since they are the same distance

from the center. So F = %fl—f’ but upward.

At point ¢, there is no force by symmetry arguments: one cannot have one
direction picked out over any other, so the force must be zero.

dd,
dt

29.68: §E’ cdl =—

_ dD - .
If B = constant then y B =0, so ft;E -dl =0.
t

[ E-dl =E,L-E,L=0,butE, =050E,L=0.

But since we assumed £, # 0, this contradicts Faraday’s law. Thus, we can’t have a

uniform electric field abruptly drop to zero in a region in which the magnetic field is
constant.

QU
A
o
&
I
(e}

Y

Y

Y

29.69: At the terminal speed, the upward force F), exerted on the loop due to the induced
current equals the downward force of gravity: F, = mg

¢ =Bvs, I = Bvs/R and F, = IsB = B*s*v/R

B*s’v.

R
m=p V=p, (4s)7(d/2)’ = p,7sd’
R=PL_ Pets _16p;s
A4 tmd® md?
Using these expressions for nmand R gives v, =16p, p,g/B’

mgR

2.2
Bs

=mg and v; =




29.70: § B -dl =0 (no currents in the region). Using the figure, let
B:Boffory<0andB:Of0ry>O.

[ B-di=B,L-B,L=0,

but B, =0.B,L =0,but B, # 0. This is a contradiction and violates Ampere’s Law.
See the figure on the next page.

dp---<—----=rc  B=0
| A .
! i .
a :_____,_ _____ J b : §>0
2971: 0) =tV VANV _a _ 4d
A AR Adp dp Cdp Kg,Adp
and
Keg, A
RC=ﬁ % =Ke,p
A d
:>jc(t)= q — Qo e—t/RC — Qo e—t/Kgop
KeyAp KeyAp Ke,Ap
. dE d(g.) Q, d(e"*)
b =Ks,—=Ke —~=Kg¢
) Jp(®) 0" s s OngoA,O i
— QO e—t/Ké‘Op — _jc (t)

_KgoAp



E, 0450 V/m

- =1.96x10"* A/m”.
P 2300Qm

29.72: a) j.(max)=

b) j,(max)=g, cj{—f = g,wE, = 2r¢, fE, = 27£,(120 Hz)(0.450 V/m)
= j,(max)=3.00x10" A/m”’.

c) If j.=j, :5=ng150 s w=— = 491x10° rad/s
Y2,

P&
7

o po @ AOXI0Trd]s oo ooy,
27 2z

d) The two current densities are out of phase by 90° because one has a sine function
and the other has a cosine, so the displacement current leads the conduction current by
90°.



29.73: a) TG = z Fem X m; summed over each leg,

=(0) (%j @ sin(90 — @) + (%j (%j @ sin(90 — @) + (%j (%j g 5in(90 — ¢)

+(L) (%j 25in(90 — ¢)

= ngL cos ¢ (clockwise).

Ts = ;7 x B = IAB sing (counterclockwise).

1=%= B—Aicosqé = _B4dg sing = Bdow
R R dt R dt R

counterclockwise looking to the — k direction.

sing. The current is going

B*A*w B'L'w

sin® ¢ = sin” ¢,

=7, =

mgL L'o : o .
SO 7 = %cow — Tsm2 @, opposite to the direction of the rotation.

b) 7=/Ia (I being the moment of inertia).
About this axis / = %mLz.
274
Sooc:2 12 —mchos¢—B La)sin2¢
5ml”| 2 R

6g 12B° o . ,
0S¢ ———SIn .
¢ Sm R ¢

c) The magnetic torque slows down the fall (since it opposes the gravitational torque).
d) Some energy is lost through heat from the resistance of the loop.




29.74: a) For clarity, figure is rotated so B comes out of the page.

b) To work out the amount of the electric field that is in the direction of the loop at a
general position, we will use the geometry shown in the diagram below.

E
0
\
rxg|a
2mr 27(ajcosd)  2m
’ dd 2
:>Eloo =Mbut8: L :Ad—BﬂTzd—Bz 72'62 d_B
P 27 dt dt dt  cos” @ dt
2
= _m dB _ ﬁd_B, which is exactly the value for a ring, obtained in

" ma dr 2 dt
Exercise 29.29, and has no dependence on the part of the loop we pick.

¢ AdB I*dB (020m)*(0.0350T/s)

c) [=—= =737x107" A,
R Rdt R dt 1.90 O
2
d) &, —1p=Lpd8_(020m)(0.0350 T/S) _175%10- V.
8° 8 dt 8

But there is potential drop ¥ = IR =—-1.75x 107 V, so the potential difference is zero.



29.75: a)

b) The induced emf on the side ac is zero, because the electric field is always
perpendicular to the line ac.

c) To calculate the total emf in the loop, ¢ = dP, = Ad—B =0 9B
dt dt dt

= £=(0.20m)*(0.035T/s)=1.40x10" V.
-3
4y =2 1407V 107 AL
R 1.90 Q
e) Since the loop is uniform, the resistance in length ac is one quarter of the total
resistance. Therefore the potential difference between a and cis:

V.=1IR, =(7.37x107" A)(1.90 Q/4)=3.50x10" V, and the point ais at a higher

potential since the current is flowing from « to c.

29.76: a) As the bar starts to slide, the flux is decreasing, so the current flows to increase
the flux, which means it flows from a to b.

b) The magnetic force on the bar must eventually equal that of gravity.

d(D 2 2np2
FB=1'LB=E(9=E 5 =EBd—A=LB (vLcos¢)=VLB cos ¢
R R dt R dt R R
2 p2
Rmg tan ¢
= F =mgtang =— cosp=>v, =———1,
¢ =mg tang p=v L*B* cos ¢
)]
0 l‘:f:ld B:le_AZE(VLCOS¢):vLBcos¢:mgtan¢.
R R d R dt R R LB
2 _2 2
d) p=ifR=Tmg an’ g
L°B
Rmg tang | . Rm*g’ tan’ ¢ D
e) P, =Fvcos(90°—@)=mg| ——=—|sing => P, =——=—", whichis
) ( 2 g(Lsz cos¢j 7=F L’B’

the same as found in part (d).



29.77: The primary assumption throughout the problem is that the square patch is small enough so
that the velocity is constant over its whole areas, that is, v = ar = ad.

a) o — clockwise, B — into page:

&=vBL=wd BL
&éA w@dB4A . - — . . :

=2 E P2 Gincevx B points outward, A4 is just the cross-sectional

R pL Yo,
area fL.

wdBLt . : LT =

=1[= flowing radially outward since v x B points outward.

Yo,

b) 7=dx Fh; Fs=ILxB=ILB pointing counterclockwise.
od’B’ Lt . . :

So 7=———— pointing out of the page (a counterclockwise torque opposing the

clockwise rotation).
c¢) If  — counterclockwise and B — into page,

= [ — flow inward radially since vx B points inward.
7 — clockwise (again opposing the motion);
If @ — counterclockwise and B — out of the page
= [ — radially outward
7 — clockwise (opposing the motion)
The magnitudes of 7 and 7 are the same as in part (a).



Capitulo 30



30.1: a) ¢, = M(di,/dt)=(3.25x107"H) (830 A/s) =0.270 V, and is constant.
b) Ifthe second coil has the same changing current, then the induced voltage is the
same and ¢, =0.270 V.

30.2: For a toroidal solenoid, M = N,®, /i;,and ® = p,N,i, A/ 27r.
So, M = u,AN,N, /27r.

30.3: a) M =N,D, /i =(400) (0.0320 Wb)/(6.52 A) =1.96 H.
b) When i, =2.54 A, ®, =i,M/N, = (2.54 A) (1.96 H)/(700) = 7.11x 10~ Wb.

304: a) M =¢,/(di/dt)=1.65x10"V/(-0.242 A/s)=6.82x 10" H.
b) N, =25,i, =1.20 A,
= ®, =iM/N,=(1.20A) (6.82x 107 H)/25
=327x10"* Wb.
c) di,/dt =0.360 A/s and &, = Mdi,/dt = (6.82x 10~ H) (0.360 A/s) =2.45 mV.

30.5: 1H=1Wb/A=1Tm’/A=1Nm/A>=1J/A>=1(J/AC)s=1(V/A)s=1Qs.

30.6: For atoroidal solenoid, L = N® ,/i = £/(di/dt). So solving for N we have:

(12.6 x107°V) (1.40 A)
(0.00285 Wb) (0.0260 A/s)

N = &i/® , (di/dt) = = 238 turns.

30.7: a) |¢|=L(di/dt)=(0.260 H) (0.0180 A/s) = 4.68 x 10~ V.

b) Terminal a is at a higher potential since the coil pushes current through from b to
a and if replaced by a battery it would have the + terminal at a.

~(5004,) (1800)° (4.80 x 10~ m?)
272(0.120 m)

=0.130 H.

30.8: a) L, =K_u,N>A/2zr

b) Without the material, L = KLLK.H = 5—(1)0(0.130 H)=2.60x10"* H.

m



30.9: For a long, straight solenoid:
L=N®,/iand ®, = u,Nid/l = L = u,N>A/l.

30.10: a) Note that points a and b are reversed from that of figure 30.6. Thus, according

to Equation 30.8, 4 = """« = 245 = — 4,00 A/s. Thus, the current is decreasing.

b) From above we have that di = (—4.00 A/s)dt. After integrating both sides of this
expression with respect to ¢, we obtain
Ai =(—4.00 A/s)At =i =(12.0 A) — (4.00 A/s) (2.00 s) =4.00 A.

30.11: a) L = &/(di/dt) = (0.0160 V)/(0.0640 A/s) = 0.250 H.
b) @, =iL/N =(0.720 A) (0.250 H)/(400) = 4.50 x 10~* Wb.

30.12: a) U= %le =(12.0 H) (0.300 A)*/2 =0.540J.

b) P=I1’R=(0.300A)* (180 Q) =162 W.
c) No. Magnetic energy and thermal energy are independent. As long as the current is
constant, U = constant.

2 472
3013 U=l =N A
2 4zr

v 4an2 _ 47r(0.150_1:1)(20.390 7) - 2850 tumms.
1o Al 14,(5.00 x 10 m?) (12.0 A)

30.14: a) U = Pt=(200 W) (24 h/day x 3600 s/h) =1.73 x 10J.
1 2U  2(1.73x107 J)

b) U=—LI’=L="-=—"""—"——"2=5406 H.
2 1 (80.0 A)

30.15: Starting with Eq. (30.9), follow exactly the same steps as in the text except that
the magnetic permeability x is used in place of .



2 2
30.16: a) free space: U =uV = B~ _0.560T)
2p, 24,
2 2
B _(0.560T)

2K 1y 2(450)

(0.0290 m*) = 3619 J.

b) material with K =450 =>U =uV = (0.0290 m*) =8.04 J.

U B 20U 21,(3.60x10°)

3017: a) u=—-= = Volume =——7 > 25.1m’.
Vol 2u, B (0.600 T)
6
by B2 = 2K _2#6G00X10T) 4y g2 gy,
VoI~ (0.400 m)

5= HoNT _ 1,(600) (250 A) _
2 27 (0.0690 m)
2 -3 2
b) From Eq. (30.10), y = =2 = (435>107T)
244, 2u,
¢) Volume V =2m4 =27 (0.0690 m) (3.50x107° m*)=1.52x10"° m’.
d) U=uV =(7.531/m*) (1.52x10°m?) =1.14x 10~ J.
o) L= UeN?A  14,(600)* (3.50x10™° m?)
2 27 (0.0690 m)

30.18: a) 4.35mT.

=7.53J/m’.

=3.65x10"° H.

U =%L12 :%(3.65 x107° H) (2.50 A)> =1.14x107° J same as (d).

3019: a) Lo F7 R Wheni—0= 400V 5 40 ars.
dr L dr 2.50H
b) When i =1.00 A = % - 600V =(05004) B00€) _ 459 o6
dt 250 H
¢) Att=02005 =i =51 - @iy =80V 1 smansimosony o413 A
R 8.00 Q
d) Astoo=iost =80V 450

R 8.00Q



30.20: (a) i,,, =105 =0.030 A =30 mA, long after closing the switch.
b)

i=i

max (

1—e™/HP) = 0,030 A(l - ej

=0.0259 A
Ve = Ri = (1000 Q) (0.0259 A) =26 V
VL = Epattery ~ VR =30V-26V=40V

(or, coulduse V, = L4 att =20 us)

c)
v

30V

30.21: a) i=&/R(1—-e"),r=L/R
i =¢Rsoi=i_ /2when(1-e"")=1,ande™" =1
Ln2 (In2)(1.25x107°H)

—t/r=In({)and ¢t = =173 us
@ R 50.0 Q a

b) U=1Li*U,, =%Li’m

U=1U,, wheni= i 2

1—e"" =12 s0e™ =1-1/2 =0.2929
t=—L1n(0.2929)/R =30.7 us



30.22: a) U:%le :>1=\/ 2.13A

L 0.115H
= e=1IR=(2.13A) (120 Q) =256 V.

U _ \/ 2(0.260)) _

b) l — [e—(R/L)t and U :%Ll2 :%Ll‘2e—2(R/L)f — %UO = 1(1L12j

2(2
“2R/L) _ 1
= e = —
2

mpmo Lo (Lo SO H P 53000

2R \2) 21200 (2
3023:a) 1, =5 =0V _go50a

R 240Q

b) l= Ioe—(R/L)t — (0.250 A) e—(240Q/0.160H)(4.0()><104S) — 0137 A
c) V,=V,=iR=(0.137 A) (240 Q) =32.9 V, and c is at the higher potential.

a

d) L — l — e_(R/L)fl/z = t1/2 — £ In (lj — m In (lj =4.62 x 10_4 S.
I, 2 R \2 2400) |2

30.24: a) Att=0=v, =0andv, =60 V.
b) Ast >wo=v, ->60Vandv, —0.
c) Wheni=0.150A =v, =iR=36.0Vandv, =60.0V-36.0V=240V.

2

. ) ) 6.00V)?
30.25: a P =g = 8] 1_ e (R/L)t — 8_ 1_ e (R/L)t — ( 1_ e (8.00Q2/2.50 H)¢t
) o ( ) R ( ) TS000 ( )

= P=(4.50 W) (1-¢ 02",
? 6.00 V)
b) P. =i*R :8_ 1— e R/Dy2 ( | — g (8009/250H)1y2
) B 7 ) =S 00a )

= P, = (4.50 W) (1—e G2 1)2,

di ¢ £ &’
o) P =il & Qe ®Diry | &gty | & ~(RID _ ,-2RIL)
) b 0 R( ) 7 R ( )

— PL _ (4.50 W) (ef(azos")t _ e*(éAOS’I)t)‘

d) Note that if we expand the exponential in part (b), then parts (b) and (c) add to
give part (a), and the total power delivered is dissipated in the resistor and inductor.



30.26: When switch 1 is closed and switch 2 is open:
d . di .R:Iidl :—Brdt'
I L%

o i’

=1In(i/1,) = _gt = =[Oeft(R/L).

30.27: Unitsof L/R=H/Q =(Qs)/Q =s =units of time.

1
30.28: a) w =— = 2=
) T f
= L= 21 —=— 621 ——=237x10"H.
472 f2C Ar*(1.6x10°)%(4.18x1072F)
b) C_. = ! ! =3.67x107"F.

47 Pl 472 (5.40x10°)*(237x10 " H)



30.29: a) T =% = 22JLC = 22150 H)(6.00x10~°F)

w
=0.0596 s, w = 105 rad/s.
b) O=CV =(6.00x10"F)(12.0 V) =7.20x107*C.
c) U, = %CVZ = %(6.00>< 10°F)(12.0 V)* =4.32x107°J.

d) Att=0,g=0=0cos(wt+¢)=¢=0.

J(1.50 H)(6.00 x 10~ F)
=-5.43x107*C. Signs on plates are opposite to those at ¢ = 0.

t=0.0230 S, q = Q COS(CI)t) — (720 % 10—4 C) COS{ 0.0230 s }

e) t=0.0230s,i= % =—w( sin(wt)

=i

7.20x107*C . [ 0.0230s
Sin

__ = —0.0499A.,
J(1.50H)(6.00x10°H)  ( +/(1.50 H)(6.00x10~° H)}

Positive charge flowing away from plate which had positive charge at ¢ = 0.
q>  (543x107°C)*

Capacitor: U, = —— 2.46x107°7.
f Cap ©72C " 2(6.00x10°F)

Inductor: U, :%Liz :%(I.SOH)(O.O499A)2 =1.87x107J.



30.30: (a) Energy conservation says U, (max)=U .(max)
Ly = Leve
2 2

=V JC/L =(22. 5V)/ 18107 fl—ozmA

The charge on the capacitor is zero because all the energy is in the inductor.

(b)
q g =0 at 3/4 period
( t
™

q=0at 1/4 period T = 2_7[ =27\ LC
@

at 1/4 period: iT:%Qm/LC :%\/(12x10’3H)(18x10’6F)
=7.30x10""s
at 3/4 period: %T =3(7.30x107*s) =2.19x10’s

(©) g, =CV = (18uF)(22.5V) = 4054C

q
+405 pic

405 pic

-9
031 0o QL 10X10°C o
Vo 429x107°V

For an L-C circuit, @ = /1/LC and T =2zn/w =27 LC

(T/27)°

L= =0.601 mH



! =1917 rad/s
J(0.0850H)(3.20 x10~°F)

30.32: =

. —4
Lnax _ 8.50x10 A:4.43><10"7C

max

a) i =w = = =
) e Cuax = O ) 1917 rad/s

5.00><104A]2

b) From Eq. 31.26 qzm:\/(4.43x10‘7c)2 _(W
S

=3.58x107C.
30.33: a) d’q +L =0=>qg= LCﬁ =(0.640 H)(3.60x10™°F)(2.80 A/s)
e at e 1 dt ' '
=6.45x10°°C.

-6
by 5o @ 8S0I0NC ey
C 3.60x10°F

30-34: a) imax = meax = Qmax = lmaX = imax v LC
w

=Q = (1.50A)\/(0.400H)(2.50 x107"°F) =1.50x107°C.

2w (1.50x107°C)?
_ Qo LSOA0TON 454 5
2C 2(2.50x10 °F)

:> Umax

by 27=22-_ 1 _ ! ~3.18x10%s™
27 zVLC  7,/(0.400 H)(2.50x107" F)
(must double the frequency since it takes the required value twice per period).

30.35: [LC]=H-F=H-£=Q~s£=9£-s2=1~A-s2 =s’ = \/LC]:s.
\ V V s A

2
1 : . .
an ——¢q =0. We will solve the equation using:

30.36: Equation (30.20) is
a ( ) dt*  LC

2

q = Qcos(wt + ¢) = % =-wQ sin(wt + @) = % = —w’Qcos(wt + @).

d’q 1 2 0 » 1 1
+—qg=—w"0 cos(wt+@d)+—cos(wt+P) =00 =—=>w=——.
g T podT v cos@ir )t cos(i+g) LC JIC




2 2 2
3037: a) U, =24 1O cos(@I+9)
2C 2 C
2+ 2
U, L =1La)2Q2 sinz(a)t+¢)=lQ S (wt+¢),since o =— .
2 2 2 C NLC
1 Q2 2 1 212 2.2
b) Upw =Uc-+U, ZE?COS (a)t+¢)+5La) Q7 sin” (wt + @)
10° 1 1 2 2
=—=—cos (wt +¢)+—L| — |Q" sin”(wi +
5 C (wt +¢) 2 (LC)Q (wt +¢)
19 2 . 2
=EF(cos (ot + @) +sin” (wt + @))
2
le—:> U 1o 18 @ constant.
2 C
30.38: a) g=Ade " cos(w't + )
% = —A%e(‘m“t cos(w't + p) — ' de”** sin(w't + ).
d’q RY _ R _ .
= =4 — | e®* cos(@'t + @)+ 20" A—e P sin(w't +
dt’ (2Lj (@t +9) 2L (@?+9)

— " Ae”** cos(w't + ).

2 2 2
:d_?+£@+i=q (ij —G)IZ—R—Z-FL =0
dt Ld LC 2L 2L LC

2 1 R2
= -
LC 4L
. dg
b) Att=0,9g=0,i=—=0
) q i
dq R :
=qg=Acosd=0and — =——— 4cosd—w'Asing =0
q p=0 iy ¢ ¢
:>A=Land—%—a)’Qtan¢=—
cos¢ 2L 2Le’
R

2IN1/LC—R? /41



30.39: Subbing x > g, m — L,b > R,k — %, we find:

d’x bdv kx d’¢ Rd
a) Eq. (1341): =5+ 204~ =0 Eq(30.27) :ﬁ+zﬁ+%= .
k b 1 R

b) Eq. (13.43): o' =, —— — Eq.(30.28): @' = | — ——.
) Ea-( ) @ m  4m’ a( )i LC 4I°

¢) Eq. (13.42): x = de "> cos(w't + ¢) = Eq.(30.28) : ¢ = Ae "> cos(w't + ¢).

2
30.41: o = _ R =L:R2=4L2(L_LJZ>R=2L S
6LC LC 6LC

— R =2(0.285 H) ! - ! =454 Q.
(0.285 H) (4.60x10™* F)  6(0.285 H) (4.60 x 10™* F)

1 1
30.42: a) When R=0, o, = = =298 rad/s.
" JLC J(0.450 H) 2.50x10°° F)

b) We want @ _095= (/LC - R*/4L’) =1- R°C
o, 1/LC AL

:R:\/4_L(l_(0'95)2):\/4(0.450H) (2.0975) 83800,
C (2.50x107° F)

= (0.95)°

30.43: a)
V)

b) Since the voltage is determined by the derivative of the current, the V" versus ¢ graph
is indeed proportional to the derivative of the current graph.



30.44: a) ¢= —L% = —L%((O.124 A)cos[(240 n/s)t]

— & =+(0.250 H) (0.124 A) (240 ) sin((240 7/s)t) = +(23.4 V) sin ((240 z/s)t).

current (mA) = solid
emf (V) = dashed

100 -

s0f

ey
015,27 1(s)

—-”

N
\\

—s0f

-100 |

b) ¢, =23.4V;i=0,since the emf and current are 90° out of phase.

) i, =0.124 A;& = 0, since the emf and current are 90° out of phase.

Ni Nih 't dr Nih
3045:2) @, jB(hd) j(”o j(hd) “027[ [< “02 In(b/a).
b =22 —'uoé\]hln(b/ )
& Inb/a)=In(1-(b—ayay~ 29 E=" N h(”_j‘
a 2a 2w a
3046:2) M=o Mg _ Nod oNIA _ NN, Ay _ N Ny
I % 14 % 14 | I, I,
by Jef = N, 208 =, Holuds i _ o N di
dt I dt / dt

diy . diy _ NNy diy

) lel =M. a1 7
1



3047: a) ¢=- L% = L=¢/(di/dt)=(30.0 V)/(4.00 A/s)="17.5 H.

b) ¢= C%) >0, -, =¢At = @, =(30.0 V)(12.0 s) =360 Wb.
c) P = Li% =(7.50 H)(48.0 A)(4.00 A/s) =1440 W.

P, =i’R=(48.0 A)*(60.0 Q) =138240 W = b 0.0104.

R

30.48: a) &= L% = (3.50 x 10‘3H)% ((0.680 A)cos(t/0.0250 s))

T
0.0250 s

Li ~ (3.50x107H)(0.680 A)
b) CI)Bmax = ]\"}ax = 400

c) g(t)=- L% =—(3.50x107H)(0.680 A)(x/0.0250 s)sin(7¢/ 0.0250 s).

=0.299 V.

=g, =(3.50x107 H)(0.680 A)

=5.95x10°Whb.

= &(f) = - (0.299 V)sin((125.6 s ™))
— £(0.0180's) = — (0.299 V)sin((125.6 s )(0.0180 s))
= &(t)=0.230 V

di di .
30.49: a) Series: L, L ) e L, ﬁ,
dt dt dt
but i, =i, =ifor series components so iy = LUy = ﬁ,thus L+ L,=L,
e dt dt
di di .
b) Parallel: Now L, L. L, L L, ﬂ, where i =1, +1,.
dt dt dt

(0] . bu =
dt dt drt dt L, dt dt L, dt

-1
:ﬂ—ﬁﬂ+ﬂﬂ:L =(L+LJ .

dt L dt L, dt .



= B2mr = i = B =22
2mr

encl

30.50: a) § B-di =p,l

b) d®, = Bdd=""14r.
2mr

® _bdq) _Mbﬂ_&ill b
c) B_.[ 3_27['[1’_271' n( /a)

d) =25 M 1p/0).
2

2
e) U= % Li’ = %l'g—; In(b/a)i® = % In(b/a).

i

30.51: a) §B~di=ﬂ01 = B2r =i = B=
r

encl

2 .\ 2 .2
!
b) u=2 = dU = udV =u@2rrdr) =——| 2| (2zrdry = 2" .
244, 2uy\ 27r Arr

b 271 b .2
_ _ Mg lpdr _ pil
0) U_de_ o jr =5, ~Inb/a).

d U= %Li2 = L= 2—12] = lg—oln(b/ a), which is the same as in Problem 30.50.
i T

30.52: a) L, = Ny, = NA[ 1N, _ ﬂoleA
1 I I 2mr 2rr

L = N,®@s, _ N,4 (ﬂoNzizj_ ﬂoszA
2 . - . -
i i 2nr 2nr
2
by m2 =[] HNCA N Ay
2nr 2nr 2nr e

2 2
30.53: u, =u, = 8°2E _ B B fenE = JucE

2y
= \J€otto (650 V/m) =2.17x10°T.



30.54: a) R:K:LZ
. 645x107 A

i
S
b) i:if(l—e_(R/L)t)E&=—ln(1—i/if):>L:_—Rt
« L : In(1-i/i,)

=1860 Q.

-4
;- —U860Q)(725x107s) oot
In(1 - (4.86/6.45))

30.55: a) After one time constant has passed:

i=f0ey =00V oy 04744
R 8.00 Q

=U= %Liz = %(2.50 H)(0.474 A)* = 0.281]J.

Or, using Problem (30.25(c)):

3/7

U=[Pdi=(450W)[ (" —e L.
0

A =
—@sowy| 4= ) _d=e) ) _ag1)
3.20 6.40

tot

b) U, =(4.50 W) j (1—e*P")dt =(4.50 W)(% + %(e‘l - 1))

2.50H
8.00 Q

e!'=0.517]J

=U,, =(4.50 W)

L/R

¢) Uy = (450 W) [(1=2¢ """ 4 ey
0

L 2L, ., . L .,
—(4.50W)(F+?(e ETRG 1)}

2.50H
8.00 Q2

The energy dissipated over the inductor (part (a)), plus the energy lost over the resistor
(part (c)), sums to the total energy output (part (b)).

= U, =(4.50 W) (0.168) = 0.236 1.



2
30.56: a)U:lLi(f:lL A2 =—(o 160 H)] —— 60V —5.00x10-3J.
2 2 \R 240 O

e Ry UL 2
R dt L dt dt

— dUL __ (60 V)2 672(240/0A160)(4.00x1074) — 450 W.

dt 240 Q

¢) In the resistor:

dUR —i’R = ie—Z(R/L)t _ (60 V)2 872(240/0.160)(4.00><1074)A
dt R 240 Q

=452 W.

2
d) P(1)=i’R= %e“/“’

=5.00x107J,

&’ ]"e,z(mw _&" L _(60V)(0.160 H)
. R 2R 2(240 Q)*

which is the same as part (a).

30.57: Multiplying Eq. (30.27) by i, yields:

2
PR+ LY 49,99 g AL df1g
dt C dt - C dt dr\ 2 dt\2 C

=P, +P +P.=0.

That is, the rate of energy dissipation throughout the circuit must balance over all of the
circuit elements.



30.58: a) If = 3% = q = Qcos(wt) = Qcos(%%j = Qcos(—] = ﬁ

. 1 2 2 1 2 2 Q2
_——— _ —_—— _ 2 p—
=1 TC(\/Q q°) ,—LC(\/Q 0°/2)

2LC
2 2 2
1,0_1,0 10" ¢

:(JvE= - - - =UB'
2 2 2LC 22C 2C

: T
b) The two energies are next equal when g = < > owt= o =>t= 5—
V2 8
30.59: V. =12.0 V;U,. =1CV? so C=2U_./V; =2(0.0160 1)/(12.0 V)* =222 uF

1 1
/= 2l IC L= (2xf)>C

f =3500 Hz gives L =9.31uH

0 6.00x10°C

30.60: a) V,, ===——"—"———=0.0240V.
C 2.50x107*F
2 -6
b) lLiiax -2 Fax = 2 __ 60019 =1.55x107A
2 2C JLC /(0.0600 H)(2.50x10™*F)
¢) U, = %Liﬁm = %(0.0600 H)(1.55x107° A)* =7.21x107°J.

:>UL =iUmax =1.80X10_8J:>UC :%Umax =

3 2

1. 4 q

d) If i=—i_ AL
2 2C 2C

=q :\/%Q:5.20><10‘6C.

2
U, = %Li2 + la” for all times.



30.61: The energy density in the sunspot is u, = B*/2u, = 6.366x10*J /m’.
The total energy stored in the sunspot is U, =u,V.

The mass of the material in the sunspot is m = pV.
1, 1 2
K=U,so Emv =U,; Eva =u,V

The volume divides out, and v = /2u, / p =2x10*m/s

30.62: (a) The voltage behaves the same as the current. Since V, oc i, the scope must be
across the 150 Q resistor.

(b) From the graph, as t — oo, V, — 25V, so there is no voltage drop across the
inductor, so its internal resistance must be zero.

Ve=V,.1=e"")

max

when t=7,V, =V _ (1-1)=0.63V,_, .From the graph, when

max

V=063V, =16V, t~05ms=1
L/R=0.5ms — L =(0.5ms) (150Q) =0.075 H

(c) Scope across the inductor:

VL
25V




30.63: a) Inthe R-L circuit the voltage across the resistor starts at zero and increases to
the battery voltage. The voltage across the solenoid (inductor) starts at the battery voltage
and decreases to zero. In the graph, the voltage drops, so the oscilloscope is across the
solenoid.

b) At ¢ — oo the current in the circuit approaches its final, constant value. The voltage
doesn’t go to zero because the solenoid has some resistance R, .The final voltage across

the solenoid is /R, ,where [ is the final current in the circuit.
c) The emf of the battery is the initial voltage across the inductor, 50 V. Just after the

switch is closed, the current is zero and there is no voltage drop across any of the
resistance in the circuit.

d) Ast—>ow,e—-IR-IR, =0
&=50V and from the graph / R, =15V (the final voltage across the inductor), so
IR=35Vand/=35V)/R=35A
e) IR, =15V, soR =(15V)/(3.5A)=4.3Q

e—V, —iR =0, where V', includes the voltage across the resistance of the solenoid.

VL =& —lR, l :i(l _e*t/z')’ SO VL :8[1 _i(l_ eft/r)]
Rtot tot

£=50V,R=10Q, R, =143Q,s0o whent=1,V, =279V

From the graph, ¥, has this value when ¢ = 3.0 ms (read approximately from the
bh), so 7=L/R_, =3.0 ms. Then L = (3.0 ms)(14.3 Q) =43 mH.

tot



M (a) Initially the inductor blocks current through it, so the simplified equivalent
uit s

i=0333A
II 2 150Q

_ 0V _ 0333 A

£
R 1504

V, =(100 ©)(0.333 A) =333V

V,=(509Q)(0.333 A)=16.7V

V, = 0 since no current flows through it.

V, =V, =16.7 V (inductor in parallel with 50 Q resistor)
A =4,=0333A,4,=0

(b) Long after S is closed, steady state is reached, so the inductor has no potential
p across it. Simplified circuit becomes

100 i=0385A

i—e/R=2Y _0385A
130 Q
V, = (100 ©)(0.385 A) =385V ; 7, =0
V,=V,=50V-385V=115V
i =0385A, 1, =2V _ 01534
750
115V

i =0.230 A
50 Q)




35: a) Just after the switch is closed the voltage ¥ across the capacitor is zero and there
lso no current through the inductor, so ¥V, =0.V, +V, =V, =V, and since

=0and V; =0,V, and V, are also zero. V, =0 means V; reads zero.

’, then must equal 40.0 V, and this means the current read by 4, is
.0V)/(50.0 Q) =0.800 A.

A, + A, +A4,=4,,but 4, =4, =0 so 4, =4, =0.800 A.
A, = A4, =0.800 A; all other ammeters read zero.
V, =40.0 V and all other voltmeters read zero.

b) After a long time the capacitor is fully charged so 4, = 0. The current through

the inductor isn’t changing, so ¥, = 0. The currents can be calculated from the equivalent
circuit that replaces the inductor by a short-circuit.:

50.0 Q 50.0 Q

v/\/\/ \/\/ VvV
400V 4[
] J _ <

I =(40.0 V)/(83.33 Q) = 0.480 A; 4, reads 0.480 A
V, =1(50.0 Q) =240V

The voltage across each parallel branch is 40.0 V-24.0V =16.0 V
V,=0,V,=V,=V,=160V

V, =16.0 V means 4, reads 0.160 A. 7, =16.0 V means 4, reads 0.320 A. 4, reads zero.
Note that 4, + 4, = 4,.
c) V;=1600VsoQ=CV =(12.0 4F)(16.0 V) =192 uC

d) Att=0and ¢t - o0, V, =0. As the current in this branch increases from zero to
0.160 A the voltage V, reflects the rate of change of current.



30.66: (a) Initially the capacitor behaves like a short circuit and the inductor like an open
circuit. The simplified circuit becomes

i=0.500 A

ISV —

2 150Q

i=2 -7V _0500A

R 150Q

V,=Ri=(50Q)(0.50 A)=25.0V
V,=0,V, =(1000)(0.50 A)=50.0 V
V, =V, (in parallel) = 50.0 V

A4 =4,=0500A,4,=0

(b) Long after S is closed, capacitor stops all current. Circuit becomes

5V —/——

= 75nF

V,=75.0 V and all other meters read zero.

(¢) ¢g=CV =(75nF)(75 V) =5630 nC, long after S is closed.



30.67: a) Just after the switch is closed there is no current through either inductor and
they act like breaks in the circuit. The current is the same through the 40.0 2 and 15.0 Q

resistors and is equal to (25.0 V)/(40.0 Q+15.0 Q) = 0.455 A. 4, = A, = 0.455 A;
A, =4, =0.

b) After a long time the currents are constant, there is no voltage across either inductor,
and each inductor can be treated as a short-circuit . The circuit is equivalent to:

40.0 Q 40.0 Q

L\/\/\/\/ \
250V )
< s 25,
) 150 = ,
50 00S <o 3 S
Q Q> < 0 S
|| )

1=(25.0 V)/(42.73 Q) = 0.585 A

—AAAN

A, reads 0.585 A. The voltage across each parallel branch is 25.0 V —(0.585 A)(40.0 Q) -

1.60 V. 4, reads (1.60 V)/(5.0 Q) = 0.320 A. 4, reads (1.60 V)/10.0 Q) = 0.160 A. 4,
reads (1.60 V)/(15.0 Q) = 0.107 A.

30.68: (a)7 = L/R =221 = 0.40 ms since 0.50 s >> 7, steady state has been reached, for

all practical purposes.

i=¢/R=50V/25Q=2.00A
The upper limit of the energy that the capacitor can get is the energy stored in the
inductor initially.
U.=U e%=lLi2 —~0 =i LC
C L 2C 2 0 max 0
Q.. =(2.00A) \/(10 x 107 H) (20x10° F) =0.90x 107 C
(b) Eventually all the energy in the inductor is dissipated as heat in the resistor.

U,=U, = %Lioz = %(10 x107 H) (2.00 A)*

=20x1072%7J



30.69: a) At ¢=0,all the current passes through the resistor R,,so the voltage v, is the
total voltage of 60.0 V.

b) Point a is at a higher potential than point b. ¢) v, = 60.0 V since there is no

current through R,.

d) Point cis at a higher potential than point b.
e) After a long time, the switch is opened, and the inductor initially maintains the
: e 600V
currentof i, =—=
R, 25.0Q
v,=—IR,=-(2.40 A)(40.0Q2)=-96.0 V.
f) Point b is at a higher potential than point a.
g) v, =—i(R +R,)=—(240A)(40Q+25Q)=-156V

h) Point d is at a higher potential than point c.

= 2.40 A. Therefore the potential between a and b is

30.70: a) Switch is closed, then at some later time:
% =500A/s=>v, = L% =(0.300 H) (50.0 A/s) =15.0 V.

60.0 V

The top circuit loop: 60.0 V=i R =i, =—=1.50 A
40.0 Q
45.
The bottom loop: 60 V —i,R, =150 V=0=1i, = >0V =1.80 A.
25.0Q
60.0V

b) After a long time: i, =

=2.40 A, and immediately when the switch is
25.0Q

opened, the inductor maintains this current, so i, =i, =2.40 A.



30.71: a) Immediately after S| is closed, i, =0,v, =0,and v, =36.0 V, since the

inductor stops the current flow.
&£ 36.0V

R,+R 50Q+1500
v. =i,R,=(0.18 A) (50 Q) =9.00 V,and v, =36.0 V —9.00 V = 27.0 V.

b) After a long time, i, = =0.180 A,

¢) i(t)=—"—(1—e ™) = i() = (0.180 A) (1 - ),

total
v (0) = (1) Ry = (9.00 V) 1 = e Jand

v, (0)=¢ —i(t) R, =36.0 V—(9.00 V) (1 —~ e-<5°f">f): (9.00 V) (3 + e‘““‘)’).
Below are the graphs of current and voltage found above.

0.20 10.00
0.16 / 8.00 /

0.12 6.00

i(A) / Ve (V)

vos/ 4.00

0.04 2.00

0.00 ' : 0.00

0.00 004 008 012 016 020 000 004 008 012 016 020

sy t(s)

40.0

300 \\

Yy (V) 200

10.0

0.0 H H
0.00 (.04 0.08 0.12 .16 0.20
153




30.72: a) Immediately after S, is closed, the inductor maintains the current i = 0.180 A
through R. The Kirchoff’s Rules around the outside of the circuit yield:
e+¢, —iIR—i,R,=36.0V +(0.18) (150) — (0.18) (150) —,(50) =0
iy = % =0.720A,v,. =(0.72A) (50 V) =36.0 Vand v, = 0.
b) After a long time, v,, =36.0 V, and v, =0. Thus
=5 2390V _h004,
R, 50Q
i, =0,and i, =0.720 A

) i, =0.720 A, i (t) = & W i,(t)=(0.180 A)e ">’ s and

total
i ()= (0.720 A) — (0.180 A)e >** " = (0.180 A) (4 —e 1 >)
Below are the graphs of currents found above.

0.80 0.80
0.60 0.60
iy (A) 0.40 i (A) 0.40
0.20 0.20 N
080 o0r o050z 016 0 098 6o \\B}T“ 0.08 0.12
t(s) i(s)
0.80
0.60 —
e (A) 040
020
0.00

0.00 0.04 0.08 0.12
t(s)



30.73: a) Just after the switch is closed there is no current in the inductors. There is no
current in the resistors so there is no voltage drop across either resistor. 4 reads zero and
V' reads 20.0 V.

b) After a long time the currents are no longer changing, there is no voltage across
the inductors, and the inductors can be replaced by short-circuits. The circuit becomes
equivalent to

50.0 Q

— AN
a
_1 200V

25.0Q

L AAN—e 1% =(20.0 V)/(75.0 Q) =0.267 A

The voltage between points a and b is zero, so the voltmeter reads zero.
c¢) Use the results of problem 30.49 to combine the inductor network into its
equivalent:

12.0 mH

18.0 270 L0g
18.0 mH(S = mHg mHg = mH (S
] 15.0 mH

TOTE™

R =75.0 Q is the equivalent resistance.
Eq.(30.14) saysi = (¢/R)(1— e "), with = L/ R = (10.8 mH)/(75.0 Q) = 0.144 ms
e=200V,R=750Q,t=0.115ms,s07=0.147 A
Ve =iR=(0.147 A)(75.0Q)=11.0 V
200V -V,-V,=0s0V, =200V -V, =90V



30.74: (a) Steady state: i = % _BOV 6600 A

125 Q

(b) Equivalent circuit:

A,
C, 25uF 35uF
C, =14.6uF
i=0.160 A
20 mH % —— 14.6 mF
q° _1
Energy conservation: °C = —Li;

q =i, LC =(0.600 A) \/(20 x 107 H) (14.6 x 10°°F)
=324x107*C

q g max at 1/4 period

P
-
U/

1 T
t=—T=—0Q2ravLC)==A~LC
4 4( ) 2

‘ =%\/(20 x 107 H) (14.6 x 10 °F) =8.49 x 10~*s



30.75: a) Using Kirchhoff’s Rules: ¢ =i R, =0=1i = % ,and
1
di, . ) £ (R /L
e-—L=2—i,R, =0=i,=—(1-e ™M),
dt 272 2 Rz( )
. . e . . €
b) After a long time, i, = —still,and i, = —.
Rl R2

—((B +R,)/L)t

c) After the switch is opened, 7, =i, =Rie , and the current drops off.

2
V: _(120v)
P 40W
and the current is to fall from 0.600A to 0.150 A in 0.0800 s,
then: i, = (0.600 A)e 1+ 8/ = 0150 A = (0.600 A)e (3602 + )220 HI0.05005)
22.0H
=
0.0800 s
=¢e=0,R, =(0.600 A)(21.2Q)=12.7 V.
e 127V

e) Before the switch is opened, i, = — = =0.0354 A
R, 360Q

d) A 40-W light bulb implies R = =360 Q.If the switch is opened,

In(4.00) =360 Q + R, = R, =21.0 Q




30.76: Series: L, ﬂ +L, & +M,, ﬂ +M,, & =L, ﬂ
dt dt dt dt dt
i di
But i =i, +i, :ﬁ=i+£andM12 M, =M.
dt dt dt
di di
So(L, +L, +2M)— =L, —,
(L +L, )dt gt

or L, =L +L, +2M.

Parallel: We have L, diy +M, iy =L, di
dt dt dt
and 1, % oy, Do p 4
dt dt dt
with Sy B TG =, = M
dt dt dt
To simplify the algebra let 4 = ﬂ,B = &, and C = ﬁ
dt dt dt

So L,A+MB=L,C,L,B+MA=L,C, A+ B=C.
Now solve for 4 and B in terms of C.

=(L -M)A+ (M -L,)B=0using A =C - B.

=L -M)(C-B)+(M —-L,)B=0

=L -M)C—-(L,-M)B+(M -L,)B=0

=(Q2M -L, - L))B=(M-L)C=B= M =L)

M -L -L))
M -L 2M - L, —L,))-M+L
But A=C - B=C - —. )¢ = L) M L ;
M - L, - L,) M - L, - L,)
M-L, . . . .. .

or A=————C. Substitute 4in B back into original equation.

2M-L, - L,

o LM -L)C MM -L) C-1.C
2M -L -L, 2M -L -L,) !
M? -LL,

-
2M - L, -L,

. LL,-M?
B T S ]
1 2

Cc=1L,C.



30.77: a) Using Kirchhoff’s Rules on the top and bottom branches of the circuit:

& _ilRl —L%: 0:} il =%(1 _e’(Rl/L)t).

3_%13 _i_2=0:l-2 =ief(1/RzC)t)
C R,

‘ & _ ' B
f— q2 = J.O 12 dt’ — — R_che (1/ R,C)t — 8C(1 —e (I/ch)t)'

2 0
b) #,(0) - L a-e =0,i, L 48.0 v =9.60x107 A.
R, R, 5000 Q
e 480V

&
¢) Ast > w:i(0)=—(N-e")=—=
) () Rl( ) R 250Q

A good definition of a “long time” is many time constants later.
. £ - & - R,
d) i =i, = _(1 —e (Rl/L)t) -2 ¢ (L /R,C)t — (1 —e (RI/L)t) =, (1/R2C)t.
R, R, R,
XX
Expanding the exponentials like e* =1+ x + — + o toewe find :

R 1(RY ., R t 1
i R B g 1 1__+T_”'
L 2L R, RC 2RC

R R R
=1 —L+——|+0(*)+---=—L, if we have assumed that 7 << 1. Therefore:
L RC R,

=1.92 A, i, =Rie*°° =0.

2

1 1 LR,C
t~— =
R, ((I/L) + (1/R22C)] [L + chj

-5
., _[_(8.0H)(5000 Q)gz.o x 10 _f) C16x10°s.
8.0 H + (5000 Q)*(2.0x 10°F)
e) Att=1.57x107s:i, = £ e ®ibry = 48—V(l —e Py =294%x107 A.
R, 250

f) We want to know when the current is half its final value. We note that the current
i, 1s very small to begin with, and just gets smaller, so we ignore it and find:

i, =0.960 A =i, = %(l R 2 (1,92 AY(1 — e BP0y,
1

= e M 20500 =t = £1n(0.5) _soH
R, 250

In(0.5) = 0.22 s



30.78: a) Using Kirchoft’s Rules on the left and right branches:

di di
Left: e—(G, +i,))R-L—L=0=R(@G +i,)+L—"L=¢.
(G +1,) 7 (G +1y) "

Right: 8—(i1+i2)R—q—Cf:0:>R(il+i2)+q_é:g,

b) Initially, with the switch just closed, i, = 0,i, = % and ¢, = 0.

c) The substitution of the solutions into the circuit equations to show that they satisfy
the equations is a somewhat tedious exercise in bookkeeping that is left to the reader.
We will show that the initial conditions are satisfied:

€ €
Att=0,q, =——e " sin(wt) = ——sin(0) =0
©= s (1) R 0)

(1) = %(1 — e [(2wRC) ™ sin(wt) + cos(wt)] = i, (0) = %(1 —[cos(0)]) = 0.

d) When does i, first equal zero? w = L ;2 =625 rad/s
LC (2RC)

iL()=0= %e’b’[—(2a)RC)’1 sin(wt) + cos(wt)] = — (2wRC) ™ tan(wt) +1=0

= tan(wt) = + 20RC = + 2(625 rad/s)(400 ©2)(2.00 x 10°F) = +1.00.

= wt = arctan(+1.00) =+ 0.785 = ¢ = 0785 =1.256x107s.

625 rad/s



. KN
30.79: a) @, =BA=B, A, + B, A, = ”;I]/V L(D -y 4”—%M(dW) =

1, Nil(D — d) + Kd]
N

=L=

d d L, —L
B:ﬂONz[(D_d)+Kd]:LO_L()B‘i'LfB:LO‘f{ fD Ojd

L—-L
o {L L JD, where L, = 4, N*D, and L, = Kty N*D.
r 0

: . ) d
b) Using K = y,, +1 we can find the inductance for any height L =L, (1 + X Bj .

Height of Fluid Inductance of Liquid Oxygen Inductance of Mercury
d =D/4 0.63024 H 0.63000 H
d=D/2 0.63048 H 0.62999 H
d=3D/4 0.63072 H 0.62999 H
d=D 0.63096 H 0.62998 H

Where are used the values y, (0,)=1.52x10" and y,_(Hg)=-2.9x107>

d) The volume gauge is much better for the liquid oxygen than the mercury because
there is an easily detectable spread of values for the liquid oxygen, but not for the mercury.



Capitulo 31



45.
31.1: a) V V_40V

BT

b) Since the voltage is sinusoidal, the average is zero.

=31.8V.

31.2: a) 1=+21, =+2(2.10A)=2.97 A.

2 2
b) I, =—1=—(297A)=1.89 A.
T T
c) The root-mean-square voltage is always greater than the rectified average, because
squaring the current before averaging, then square-rooting to get the root-mean-square

value will always give a larger value than just averaging.

313: a) V=IX, = IoL ==~ 60.0 V

= =0.120 A.
wL (100 rad/s) (5.00 H)

N 60.0 V
"L (1000 rad/s) (5.00 H)
2 60.0 V

" wL (10,000 rad/s) (5.00 H)

b) [ =0.0120 A.

c) I =0.00120 A.

A
0.1®

e 5
100 200 500 1000 2000 5000 10000
Log [w]



314: a) V=IX,= Lc = I =VeC =(60.0 V) (100 rad /s) (2.20 x 10° F) = 0.0132 A.
w

b) I =VwC =(60.0 V) (10000 rad /s) (2.20 x 10 F) = 0.132 A.

¢) I=VoC =(60.0 V) (10,000 rad /s) (2.20 x 10°F) = 1.32 A.
d)

\
0.1 [ ]

0.5

Loelll e

0.05

0.02

& >

100 200 500 1000 2000 5000 10000
Log [w]

31.5: a) X, =wL =2xfL = 2x(80 Hz) (3.00 H) = 1508 Q.
X, 1200
2nf  27(80 Hz)

1 1 ~
274fC 27(80 Hz) (4.0x10° F)
1 1 1

d) X,=——=C-= = =1.66x107° F.
27fC 271X, 27(80 Hz) (120 Q)

b) X, =wL=2nfL=L=

=0.239 H.

1
C) XCZE—

497 Q.

31.6: a) X, = oL =2xfL=2x(60 Hz)(0.450 H) = 170Q. If =600 Hz, X, =1700C.
1 1 1

b) Xo=— = _ —— =1061Q.If f =600 Hz, X =
wC 2zfC 27(60Hz) (2.50x10™ F)
106.1Q.
O Xe=X, > colmo=— = 1 = 943 radss,
wC VLC  \[(0.450 H) (2.50 x 10 Hz)
so f =150 Hz.
31.7 Vc=i:>C= ! (0850 A) =1.32x107 F.

wC oV,  27(60 Hz) (170 V)



v, (12.0 V)

= =1.63 x10° Hz.
2nlL  27(2.60 107 A) (4.50 x10™* H)

31.8: V, =loL= f =

31.9: a) i=—= (3.80 V) cos (720 rad/s)r)
R 150 Q
b) X, =wL = (720 rad/s) (0.250 H) = 180 Q.

¢) v, = L% = —(wL) (0.0253 A) sin((720 rad/s)f) = — (4.55 V) sin((720 rad/s)?).

=(0.0253 A) cos((720 rad/s)1).

1 1
wC (120 rad/s) (4.80 x 10 F)
b) To find the voltage across the resistor we need to know the current, which can be
found from the capacitor (remembering that it is out of phase by 90° from the capacitor’s
voltage).
Ve _veos(wt) _ (7.60 V) cos((120 rad/s)t)
X, X, 1736 Q

= v, =iR=(4.38x10" A) (250 Q) cos((120 rad /s)¢) = (1.10 V) cos((120 rad/s)?).

31.10: a) X, = ~1736 Q.

=

=(4.38x107 A) cos((120 rad /s)z)

1 1 L 1
3Al:a) fo=0,=——=X =0l -—= X = - =0.
) * JLC wC JLC c/JLC

b) When o >w, = X >0.
c) When o >0, = X <0.

d) The graph of X against @ is on the following page.

x
3.00

2.00

1.00

0.00

0.500 1.00 1.50 2.00 2.50 w
-1.00 - e

-2.00 /
-3.00 /
—4.00 /




3112: a) Z =+ R* +(0L)® =4/(200 Q)* + ((250 rad/s) (0.400 H))* =224 Q.
by 7=V 2300V

= =0.134 A
Z 2240

¢) V, = IR =(0.134 A) (200 Q) = 26.8 V;
V. = IwL = (0.134 A) (250 rad/s) (0.400 H)

=V, =13.4V.
d) ¢ = arctan YL | = arctan 134V =26.6", and the voltage leads the current.
Ve 268V
e)
A
IX(L) 4
IR
31.13:

=696 Q.

by 1=L =390V 6 0431a.
Z 6960

a) Z=1/R*+(1/wC)* =/(200 Q)* +1/((250 rad/s) (6.00 x 10~ F))’

V, = IR = (0.0431 A) (200 Q) = 8.62 V;
c) po= L _ (0.0431 A) sV
wC (250 rad/s) (6.00 x 10 F)

d) ¢ = arctan Ve arctan 287V
Ve 8.62V

—73.3°, and the voltage lags the current.



31.14: a)
1

Z = (oL -1/ oC) = (250 rad/s) (0.400 H) — =567 Q.
(250 ad/s) (6.00 x 10™° F)

by 1=2 =390V 0520 A,
Z O
¢) V. =IwL =(0.0529) (250 rad/s) (0.400 H) =5.29 V
yo_ 1 (0.0529 A) 353y,

©T wC (250 radls) (6.00 x 10° F)
VL — VC o
d) ¢ =arctan Y = arctan (—0) = —90.0°, and the voltage lags the current.
R

e)

IX(L)

IX(C)

31.15: a)

30

20

10

b) The different voltages are:
v =(30.0 V) cos(250f + 26.6°), v, = (26.8 V) cos(250¢), v, = (13.4 V) cos(250¢ + 9

Att=20ms:v=20.5V,v,=7.60V,v, =12.85 V.Note v, + v, = .

c) Att=40ms:v=-152V,v =-2249V,v, =729 V.Note v, +v, =v. Be

careful with radians vs. degrees in above expressions!



31.16: a)

Vi
30

) A S :
20 :’ y /1' \‘ V(C) —----
i Y 1 1
/ \ I Y
~

0 - Y

T ~ T L
! 02 // 0.03 \0.04 }ﬁ' 05 1(s)
\" / \“ / /
3 I 1
20 N s !
\J ; \s
\J i A ’
A Y A\

-30

=l
o]
=,

AN
N

-10

b) The different voltage are:
v =(30.0 V) cos(250t — 73.3°), v, =(8.62 V) cos(250¢), v. = (28.7 V) cos(250¢ — 90°)

Att=20ms:v=-251V,v, =245V, v, =-27.5V.Note v, +v. = .
c) Atr=40ms:v=-229V,y, =-723V,v. =-15.6 V. Note v, + v, =v. Careful

with radians vs. degrees!

3117: a) Z =R + (oL —1/wC)*
=7= \/(200 Q)* + ((250 rad/s) (0.0400 H) — 1/ ((250 rad/s) (6.00 x 107° F)))?

=601Q.
b) I=K=ﬂ=O.0499A.
Z 601Q
C) ¢ =arctan oL =l/oC = arctan 100£€2-667€2) _ _ 70.6°, and the voltage lags
R 200 Q
the current.

d) V, =1IR=(0.0499 A) (200 Q) =9.98 V;

V, =IoL =(0.0499 A) (250 rad/s)(0.400 H) = 4.99 V;

VC = 1 = (00499 A) 3 - 33.3 V.

wC (250 rad/s) (6.00x 10 F)

e) Because of the charge-storing nature of the capacitor, its voltage will tag the source
voltage. That is, the capacitor’s voltage will peak after the source voltage.




31.18: a)

30 o >
A\ AN Vi) — —
i A o8y 5 DMV mm——
2(] : X 1. A V‘O
1
:

AN P77 A
~ Nn\ 0.02 /, \""’M‘EV ?;95 )
\ ]
-10 3 i ]
) / 1 / !
3 i 3 N
20 \‘ ’ll U’l
’ 3 7
30 o -

The different voltages plotted above are:

v=30V) cos(250t — 70.6°), v, = (9.98 V) cos(250¢),

v, =(4.99 V) cos(250¢ + 90°)v. =(33.3 V) cos(250¢ — 90°).

b) Atr=20ms:v=-243V,v,=283V,v, =479V,v. =-319 V.
c) Att=40ms:v=-238V,v, =-837V,v, =2.71V,v. =-181V.

In both parts (b) and (c), note that the voltage equals the sum of the other voltages at
the given instant. Be careful with degrees vs. radians!

31.19: a) Current largest at the resonance frequency

! =113 Hz. Atresonance, X, = X.and Z=R. I =V /R =150 mA

Jo=5udic

b) X,.=1/0C=5000Q; X, =l =1600
Z =R+ (X, - X.)* =1/(200 Q)* + (160 Q — 500 Q)> =394.5Q
[=V/Z=7.61mA

X > X, sosource voltage lags the current.

%/(wc)j, along with the

2
31.20: Using Z = \/Rz + (a)L - %) and ¢ = arctan (
)

values R =200 Q, L =0.400 H,and C =6.00x10°° F:
a) w=1000rad/s:Z =307 CQ, ¢ =49.4°
w=600rad/s: Z =204 Q, ¢ =—10.75;
w=200rad/s: Z=779Q, ¢ =—75.1°.

. o 4
b) The current increases at first, then decreases again since / = =

c) The phase angle was calculated in part (a) for all frequencies.



31.21: V2=V, +(V, - V,.)’
V= \/(30.0 V)? +(50.0 V-90.0 V)* =50.0 V

31.22: a) First, let us find the phase angle between the voltage and the current

1
L—— 3 < H) -
) - ® R“’ ¢ _27(125x10° Hz) (20.0 ><3 ;(()) QH) (2510 ) (30X 10°C) = ps:

The impedance of the circuit is

Z= \/Rz + (oL _%)2 = \/(350 Q) =+ (-752Q)* =830 Q.
w

The average power provided by the supply is then

V2 (120 V)?
P=V I = —ms =" "2 cos(-65.1°9) =732 W
s rms COS() p cos(¢) 830 O cos( )

b) The average power dissipated by the resistoris P, = I R = (mv)z (35002) =732 W

830Q

31.23: a) Using the phasor diagram at right we can see:
IR R

cos ¢ = =—.
WR+x2-x7 Z
IR
IX(L) f -
IX(C)
Y
1V’ V:
b) P, =——cos ¢ =—"%cos
) av 2 Z ¢ Z ¢
2
p=tmB_p g

av Z Z rms= *



2 2

31.24: P =m og g Vs R
Z Z 7Z
2 2

-7 (105 Q)

(75.0 Q) =43.5 W.

31.25: a) cos ¢ = R_ R
VA 1Y
\/Rz + (coL — ]
oC
2400
- 2
(240 Q)" +| 22(400 Hz) (0.120 H) - 1 .
27(400 Hz) (7.30 x 10°° F)
= M =0.698
3440

= ¢ = cos ™' (0.698) = 45.8°.

b) From (a), Z =344 Q.

c) V. =1_7=(0450A)(344Q)=155V.

d) P, =V, _I_ cos¢=(155V)(0.450 A) (0.698) = 48.7 W.
e) P,=P, =487 W.

f) Zero.

g) Zero.
For pure capacitors and inductors there is no average energy flow.

31.26: a) The power factor equals:

cos¢=£= R = (360€2) =0.181.
z \/R2 + (wl)’ \/(360 Q)* + (((2)60 rad/s) (5.20 H))?
b)
P = L V—2 cos¢ = ! (240 V)° (0.181) =2.62 W.

v 2 Z 2 \/(360 Q)? + (((27)60 rad/s) (5.20 H))?



31.27: a) At the resonance frequency, Z = R.
V=1Z=1R=(0.500A)(300Q)=150V

b)V, =IR=150V

X, =wL=LQ1/LC =\[LIC =2582Q;V, =IX, =1290 V

X, =1/(wC)=,/L/C =2582 Q;

Ve =1IX,=1290 V

¢) P,=1V Icos¢g=1LI"R,sinceV = IR and cos ¢ =1 at resonance.
P, =1(0.500 A)’ (300Q)=37.5W

31.28: a) The amplitude of the current is given by
14
[ =

JR? + (oL - )

[0}

Thus, the current will have a maximum amplitude when
ol="—-=C=-"L-=——"1——=444 4F.

w’C @’L  (50.0rad/s)* (9.00 H)

b) With the capacitance calculated above we find that Z = R, and the amplitude

of the current is / =% = 3% =0.300 A. Thus, the amplitude of the voltage across the

inductor is ¥ = I(wL) = (0.300 A) (50.0 rad/s) (9.00 H) =135 V.

31.29: a) At resonance, the power factor is equal to one, because the impedance of the

o . R
circuit is exactly equal to the resistance, so 7 =1.

2 2

b) Average power: P, = Vi 1 (150 V)

R 2 1500
c¢) Ifthe capacitor is changed, and then resonance is again attained, the power

factor again equals one. The average power still has no dependence on the capacitor, so

P =75W again.

=75W.

1 1

V1€ J(0350H) (120 %10 F)

b) V. =é = I =V,C=(550 V) (15.4x10° rad/s)(1.20x 10" F)=0.102 A

31.30: a) o, = =15.4x10° rad/s.

=7V, =IR=(0.102 A)(400Q)=40.8 V.

max(source)



31.31: a) At resonance:
1 1

w, = =
" VL (0400 H)(6.00x10°° F)
= o, = 645.5 rad/s = 103 Hz.

b)
A
IX(L) IR=1Z
IX(C)
Y
V300V Ve Vi 212V
V=V, o) = —= = — =212V, [ = ms _
C) 1 Ims(somce) \/E \/E Z R 200 Q
=0.106 A
V, =1, .0,L=(0.106 A)(645.5 rad/s)(0.400 H)=27.4 V.
I.. (0.106 A)

v, = =274V =V,,
P w,C (645.5rad/s)(6.00x10°° F) ?

V, =0, since the capacitor and inductor’s voltages cancel each other.

AN AN

s source) = ﬁ = \/5

d) If the resistance is changed, that has no affect upon the resonance frequency:
w, = 645.5 rad/s = 103 Hz
v Vies 212V

e) I, =—ms—lms_ =0212A.
Z R 100Q

1 1

31.32: 2) o, = = =945 rad/s .
" JLC (0280 H)(4.00x10° F)
b) /=1.20 A at resonance, so: R=Z :; = 1127(())\; =70.6 Q

¢) At resonance:
Vo R)=120V, V. (L) =V, (C)=IwL = (1.70 A) (945 rad/s)(0.280 H)
=450 V.



31.33: a) ﬂzﬁzlo.
N, 12
14 12.
b) [, =—= OV:2.40A
R 5.00Q

¢) P,=1,V.. =(240A)(120V)=288W.
2 2

d) R= Vs = (1 20 V) =500 Q, and note that this is the same as
P 28.8 W

(5.00 Q) (%jz =(5.00 Q) (%jz =500Q.

2

3134: a) 22 =100 g
N, 120

b) P=1,V,=(0.00850 A)(13000 V)=110.5 W .

o I, =1, % =(0.00850 A)(108)=0.918 A .

1

2 3
3135:0) R =R || oMo (R 12810 Q
N, N, \R, 8.00Q
1

N
b) V, = VI(VZ

1

J: (60.0V)— =150V
40

31.36: a) Z,... =+ R +(1/wC)’
b) Zwoofer = R2 + (C()L)2
c) If Z =7

d) At the crossover point, where currents are equal:

1
R*+(l/wC?)=R* +(wL) = 0w =——.

then the current splits evenly through each branch.

tweeter woofer 2



31.37: ¢ = arctan oL =L= Btan¢ _ R tan ¢
R ) 2nf

( 48.0Q

— 52.3°)=0.124 H.
27(80 Hz)j tan( )

31.38: a) If 0 =200rad/s: Z = R* + (0L - 1/wCY

= 7 =/(200 Q) +((200 rad/s) (0.400 H)—1/((200 rad/s) (6.00x10° F))} =779 .

7=V _39Y _go3ssAa=1 = —0072A

" Z 77190 NG
So, V=1, .R=(0.0272 A)(200 Q)=5.44 V,
V,=1,.X, =1I,.0L=(0.0272 A)(200 rad/s) (0.400 H)=2.18 V,
X, - Lo _ (0.0272 A) i
wC (200 rad/s)(6.00x10° F
V,=V,=V,=227V-218V=205V,and V; =¢,, =22 V=212V.
b) If @ =1000 rad/s, using the same steps as above in part
(@) Z=307Q,V,=138V,V,=276V,V, =115V, 7, =16.1V,V, =212 V.

Vi=1

rms

=227V,
)

31.39: a) 7, =0 when ot = (n + 1/2)7[ =1t = l, t, = £l =t - =z
2w ) )
b) rz idt=["1 cos(w? )dt = isin(a)t) oL [sin(37/2) - sin(z/2)] = A2t
4 4 w I ()] w w

since it is rectified.

C) SO’ Irav(t2_t1)=£:>1rav=gg=£‘
w T

31.40: a) XL:wL:Lzﬁ 250

= -=0332Q
o  2x(120 Hz)

b) Z=4R>+X,’ =/(400 Q) + (250 QF =472 Q, cos¢:§.

2
Paszrmsﬁermszz/iz(MzQ) M=668V.
Z Z R 400 Q

b



31.41: a) If the original voltage was lagging the circuit current, the addition of an
inductor will help it “catch up,” since a pure LR circuit would have the voltage
leading. This will increase the power factor, because it is largest when the current
and voltage are in phase.

b) Since the voltage is lagging, the impedance is dominated by a capacitive element so
we need an inductor such that X, = X, where X, is the original capacitively dominated

reactance (this could include inductors, but the capacitors “win”).
R=0.720 Z = 0.720(60.0 Q)= 43.2 Q

=Z=(R+X2 = X,=v2"-R* = /(60 Q) -(432Q) =41.6Q.

X, :XC:41.6Q:a)L:>L:£:ﬂ:O.132H
w 27[(50Hz)

31.42: Z =7 =205 =80.0Q =R’ + X = /R’ +(50.0 Q) . Thus,

R= \/(80.0 Q) —(50.0 Q)° =62.4 Q.. The average power supplied to this circuit is

equal to the power dissipated by the resistor, which is
P=1"mR=3.00A) (62.4Q)=562 W

31.43: a) o, =1//LC =3162 rad/s; o = 20, = 6324 rad/s
X, =wL=31.62Q; X, =1/(0C)=17.906 Q
Z=yR+(X,-X.F =X, -X.=2371Q
[=V/Z=(500x10"V)/(23.71Q)=2.108x10™* A
Vo =1X. =1.667x10" V; this is the maximum voltage across the capacitor.

0=CV,.=(20.0x10°F)(1.667x107 V)=33.34 nC

b) Inpart (a) we found 7/=0.211 mA
¢) X, > X and R = 0 gives that the source and inductor voltages are in phase;

the voltage across the capacitor lags the source and inductor voltages by 180°.

L,

=4, and so the

3144 0) X, oL =20,L=2|——|=2[ 2 |-4x, =
’ o,C w,C 2

inductor’s reactance is greater than that of the capacitor.

X
b) X, =w3L=w1L= 1 = ! :lXc S =l,andsothe
: 3 3w,C 9%0,C) 9 7 Xcz 9

capacitor’s reactance is greater than that of the inductor.
c) Since X, = X at o, , that is the resonance frequency.

G




31.45: V,, =V +V? =1 |R* + (L)’ :% R +(wL)
Voo AR +(0L)
Ve YR+ (oL-1oC)
It @ is small: Vou R wR

~ = ~ wRC.
V. JR +(oCY 'R +(/CY

/ 2
If @ is large: Qzﬂ—l

v, (a)L)2
31.46: ¥, =V, =1 = You _ ! .
oC V. wCR+(0L-1wC)
If w is large: Vou _ ! ~ ! -
Ve wCR* +(wL-1aCf wCloL) O’
If @ is small: ?‘t ~ ! o€ _ 1.

. wC(wcy o€



y
JR? + (0L -1/0C)

2 2
b) 13,V=112R=1[Kj S -
2 2\z R* +(wL —1/wC)
c) The average power and the current amplitude are both greatest when the

. . . 1 1
denominator is smallest, which occurs for o)L = —— = o, =

0,C JLC

31.47: a) I:K:
zZ

Q) Po- (100 V) (200 Q)/2
" (200 Q) +((2.00 H) - 1/0(5.00x10° F))
. p - 25w*

" 40,0000 + (200” —2,000,000)

A

0.000800

0.000600 A

Power
0.000400
(W) / \

0.000200 /
0.00 —

0.00 400 800 1.20e + 03 1.60¢ + 03
Angular frequency (rad/s)

Note that as the angular frequency goes to zero, the power and current are zero,
just as they are when the angular frequency goes to infinity. This graph exhibits the same
strongly peaked nature as the light red curve in Fig. (31.15).



31.48: 2) V, = low="2L _ Vol .
Z R +(oL-1wC)
I 1 1

O Ve e T acz 2 N
wCyR* + (0L —1/C)
©)
1.00e 1.00e
800 800
600 600
Inductor voltage Capacitor voltage

400 / \ 400 ‘
200 ' / \

200
0.00

0.00
0.00 200e+03  4.00e+03 0.00 2.00e+03  4.00e+03

Angular frequency Angular frequency

d) When the angular frequency is zero, the inductor has zero voltage while the
capacitor has voltage of 100 V (equal to the total source voltage). At very high
frequencies, the capacitor voltage goes to zero, while the inductor’s voltage goes to 100

1
V. At resonance, @, = F =1000 rad/s , the two voltages are equal, and are a

maximum, 1000 V.



1. 1o 15 1 (1 1
31.49: a)UB=5L12:>(UB)=EL<12>=5L1rms -5l 73 =ZL]2
1 1 1 ., 1 (VY 1
UE:ECV2:<UE>:EC<VZ>:ECVHHS =C —2] =ZCV2
b) Using Problem (31.47a):
2

1, 1 V? LV?
U==LI"==L = :
) 4 47\ JR? + (0L~ 1CY 4R* +(wL ~1/wC))

Using Problem (31.47b):
1 1 y? y?

2
We) =g Che =5¢ 0*C* (R + (0L -1/wC)’)  40*C(R* +(wL ~1/wC)’)

c) Below are the graphs of the magnetic and electric energies, the top two showing the
general features, while the bottom two show the details close to angular frequency equal
to zero.

d) When the angular frequency is zero, the magnetic energy stored in the inductor is
zero, while the electric energy in the capacitor is U, = CV? / 4. As the frequency goes to

infinity, the energy noted in both inductor and capacitor go to zero. The energies equal

1 LV?
each other at the resonant frequency where ) = ———=andU, =U, =—-.
NJLC 4R
A \
0.140 0.140
0.120 0120
0.100 ' 0.100 /\
0.080 g
. 0.080
Magnetic energy ) Aectr oy
g gy 0.060 Electric energy 0.060 ] \
0.040 0.040
0.020 0.020 ; o
0.00 0.00 : >
0.00 1.00e + 03 0.00 1.00e + 03
Angular frequency Angular frequency
4
0.00800 0.00800 l \

0.00600 /I | \\ 0.00600 / \

Electric energy () 50400

]\ A

Magnetic energy g 00400

0.00200 / X T \
0.00 0.00
0.00 1.00e + 03 0.00 1.00e + 03

Angular frequency Angular frequency



31.50: a) Since the voltage drop between any two points must always be equal, the
parallel LRC circuit must have equal potential drops over the capacitor, inductor

and resistor, so v, =v, =v. =v. Also, the sum of currents entering any junction
must equal the current leaving the junction. Therefore, the sum of the currents in
the branches must equal the current through the source: i =i, +i, +i..

A
i(C)

i(R)

i(L)

4

b) i, =% is always in phase with the voltage. i, = -} lags the voltage by 90°, and

i =vwC leads the voltage by 90°.
c) From the diagram,

2 2
14 14
=12+, -1 2_—(—] +| Vo€ ——
¢ He=1) R L

2
d) From (c): IzV\/LZ+(wC—Lj - But
R oL

2
PSS g RN
zZ Z R oL
31.51: a) At resonance, @ —;:wC—Lzl —Va)C—L—I so =1
* ° > 0 \/E 0 COOL C 0 COOL L R

and / 1s a minimum.
2 2

b) P, = ? cos ¢ = 3 at resonance where R < Z so power is a maximum.

c) At w =w,, I and V are in phase, so the phase angle is zero, which is the same as a
series resonance.



3152: a) ¥ =+2r, =317 1, =~ =31V 778 A,
R 400 Q

b) 1. =VwC=(311V)(360 rad/s)(6.00x10° F)=0.672 A .

c) ¢ = arctan Ie arctan 067271 _ 40.8°, leading the voltage.
1 0.778 A

R

d) 1=+ +1.> =:(0.778 A} +(0.672 A =1.03A.
e) Leads since ¢ > 0.



V |4
3153:a) I, =—; 1. =VoC; I, =—.
R >t L
R wlL
b)
7
12 A
le — —
10 -
8
()l
40 P S
v -
i —
2 \\\ SRS 4 ’ L e
ol s e
0.00 2.00 4.00 6.00 8.00 100 @

c) w>0:1.-50;1, 0.0 >0:[. >0 [, >0.

At low frequencies, the current is not changing much so the inductor’s back-emf
doesn’t “resist.” This allows the current to pass fairly freely. However, the current in the
capacitor goes to zero because it tends to “fill up” over the slow period, making it less
effective at passing charge.

At high frequency, the induced emf in the inductor resists the violent changes and
passes little current. The capacitor never gets a chance to fill up so passes charge freely.

1 1
d) o= -
) VLC 2.0 H)(0.50x10° f)

=1000 rad /sec = f =159 Hz

HC) i(R)
i(L}
V ? v
e) I=.—=| +(VoC—-—)
) ( Rj ( a)L)
100v Y’ 100V ?
= =22 4] (100 V)(1000s7)(0.50 x 107 F) - - =0.50A
200 Q (1000s™)(2.0H)

f) At resonance 1,= I, =VwC = (100 v)(1000 s™)(0.50x10™° F) = 0.05 A and

im0V _gs0a.
R 200Q



31.54: a) Note that as @ — o, w L — o and L — 0. Thus, at high frequencies the

oC
current through R, is nearly zero and the power dissipated by the circuit is
2 2
Ve _COVY g agew,
R, 40.0 Q

b) Now we let w — 0, and so @ L — 0 and L — oo, Thus, at low frequencies the
)

current through R, is nearly zero and the power dissipated by the circuit is
Vs _ (240 V)*

R 60.0Q

=0.960 kW.

31.55: Connect the source, capacitor, resistor, and inductor in series.

2 2 2
P :@cosqﬁ N Vims €086 _ (120 V)" (0.560) _ 3670
31.56: a) Z P, (220 W)

= R=Zcos¢ = (36.7 Q)(0.560) = 20.6 Q.

b) Z=yR*+X,” =X, =NZ? - R* =/(36.7 Q) - (20.6 Q)* =30.4 Q. But at
¢ = 0 this is resonance, so the inductive and capacitive reactances equal each other. So:
wC wX,. 2rfX. 2x(50.0Hz)(30.4Q)
V: (120 V)’

c) Atresonance, P=—
R 206Q

=1.05x10"* F.

=699 W.

31.57: a) tang = % = X, = X. +Rtang.
=350 Q + (180 Q) tan(-54°) =102 Q.

b) P=I>R=1_ = Ji _ [44OW) _ ) ggo A
R\ (180 Q)

C) Vrms =[rmsZ =[rms\/R2 +(XL _XC)2

=V, =(0.882 A)y/(180 Q)* +(102 Q350 Q)* =270 V.

rms



31.58: a) For 0 =800rad /s, Z = /R* + (0L -1/ &C)’
= 7 = /(500 ©)? + (800 rad/s)(2.0 H) — 1/((800 rad/s)(5.0 x 10~ F)))* =1030

_V_100V 0.0971A = V, =IR=(0.0971 A)(500 Q) =48.6 V.
Z 1030Q
1 0.0971 A

243 V.

VC = = 77 =
oC (800 rad/s)(5.0x107" F)
V, = IoL =(0.0971 A)(800 rad/s)(2.00 H) =155 V.

Also note ¢ = arctan(%/(w@j =-60.9°.

300

oV AWV

200 | @ VLY O V(R) =
: TN

100 |z 2 £ 3
i R 7 £ 7y

Voltage :
1 : SN
~100 % . A& L N Sl 2 ol A

-200 %‘

A

000 200 400 600 800 100 120 140
Time

b) Repeating exactly the same calculations as above for
®=1000rad/s:Z=R=500Q;¢=0.;1=0200A;V, =V =100 V;V. =V =400 V.

500 -

:100 O V= WR)

200 e T £ A V(O)

_‘200 NI ) =~ o V(L)

ol | 41 Ve
Voltage o 1 =2l O gﬁ\

~100 ‘E} - 5

-200 AN

AR WY S G W .

100 N : :

—500

0.00 2.00 4.00 6.00 8.00 10.0 12.0 14.0

Time

c) Repeating exactly the same calculations as part (a) for
®=1250rad/s:Z = R=1030 Q;¢ = +60.9°%1=0.0971 4;V, =48.6 V; V. =155V, V, =



c SOV 575

v
31.59: 2) V. =IX . =>1=—
X. 430Q

Vv 120V 160 Q.

b) Z=1-=
I 075A

o) Z=R+(X, - X}
=X, =X, 7> - R =480 Q+,/(160 Q) —(80 Q)’

=X, =619Q or 341 Q2
—>X, =wlL.Forus, X, =341Qif o< v, .

d) If o <w, then X, =

31.60: We want P (w,) = maximum, P, (w,)=0.01 P_(w,). Maximum power implies

w=-—=C= 12= ~ 1 - =2.86x107"" F.
NLC Lo, (1.0x10™ H)[27(94.1x10" Hz)]
2 2
Po(0,) 0012, () = —— 2 _ L[V
R*+(wL-1/wC)* 100\ 2R

— 2 J—
— 100 R = R? + (L —1/C)* = R = |(@L /oG _(@L-1/wC)
99 J99

! 27(94.0x10° Hz)(1.00x107° H) — - !
271(94.0x 10° Hz)(2.8

=>R=—+=
V99

= R=0.126 Q.
This answer is very sensitive to the capacitance so you may have to carry the first part

of the problem out to more significant figures.

31.61: The average current is zero because the current is symmetrical above and below

412 A7 1
3

the axis. We must calculate the rms-current:

1(¢)= 1()—

ik

0



1 1
JLC  J1.80 H)(9.00x 107 F)
b) Z=yR*+(@L-1/wC)’
= 7 =/(300 Q)° + (786 rad /5)(1.80 H) ~ 1/ (786 rad/$)(9.00x 107 F)))* =300 2.
V60V

31.62: a) o, = =786 rad/s.

=] =-m— =7 —(0200A.
©Z 300Q
c) We want
1 v, .
==, =-2= Von = R+ (wL-1/0C)? = oms
2 A \/R2 +(6{)L—1/0)C)2 Irmso
2
:w2L2+%—2—L+R2—%=0
w’C* C L.
2
= (0’)’ I’ + 0’| R —%—% +L2=O.
c 1., ) C

Substituting in the values for this problem, the equation becomes: (w”)*(3.24) +
@’ (—4.27x10%)+1.23x10" = 0.

Solving this quadratic equation in @’ we find w* =8.90x10° rad’ /s2 or 4.28 x
10° rad* /s> = w =943 rad /s or 654 rad/s.

d) (i) R=3009Q,7 . =0.200, 0w, — a)2| =289 rad/sec.ii) R=30Q,1

=2A,

rms, rms,

0, — @,| = 28 rad  sec. (iii) R =3Q, I, =20A, |, -, =288,

Width gets smaller as R gets smaller; 7, gets larger as R gets smaller.



at resonance since X, = X .

31.63: a) [, =

le
2 AN S

small compared to w,.

o)

(mL——j _ ! (a) LC-1)°.
CO

b) w=0w,+Aw

oC
2 4
w§=LSOC2= 214.Thus 212: - Loy .
LC Lo, 0’ C* (0 +20,A0 + Aw®)
but Aw® is very small SO
2 2 2
212 Lo . Lo, ~ ol 1_2Aa).
o’C* (o, +2a)0Aa)) - 2Am o,
0)0
2
o’LC—1=(w; +2w0Aw+Aw2)(i2j—1:1 PPV A“; _1- 2o sz .
CUO 600 600 a)o @,

2Aw

@,

Again, Aw’ is very small compared to woz, so ' LC—1=

Putting this together gives

2 2 243
(a)L —L] = L2w02(1 - 2A°"J (M“’J _ar A - 2R

) , , w,

But Aw’ is much smaller than «,. Finally

()

c

2
(wL —ij ~ 4 Aw’,50 Z =R’ + 4P Aw”.

or Z° =(2R)’.

==

C) I:lIO:>K:l
2 zZ 2

3R*
407

4L
a)=co0J_r\/EE but\/z£<< ! = R<< ﬁ
4 L 4 L JLC 3C

d) |a)1 - a)2| =2Aw =3 % As R increases so does the width.

R’ +4’Aw* =4R* = Aw =+

1207 g - 1 = 1000 rad / sec;
150 J(2.50 H)(0.400x 10~ F)

e) () [, =

o, — ,| =1.04 rad/se

o, — w,| = V3 21209 =10.4 rad/sec. (ii)l, = 80A, m, =



31.64: a) / :g: at resonance L ZL. Sol ,  =—

1 2 COC
R* + [a)L —j
wcC

by v =1 xe—— =L [L
RwOC R\ C
C) VL :[maxX =S :K L
‘max R C
1 1 1
d U. ==CVZ =—C——=—L
Ve =3 Ve 53w e 2w
1 1,7
e) U, =—LI* =—L—.
) Lo 2 max 2 R2
31.65: w="2
2
a) I—K: - v
z C!)O 2 \/R2+9L
a)OC 4C
b) Ve, =M= "o 9L:% 2V9L
@o \/R2+ R*+> =
C C
L
\/R2+ R +=—
C 4 C
2
d) U ax=lCV2 = 2“; T
2 R4+ LE
4 C
1., 1 LV?
e) U, =—LI —
) Ly, 2 2R2 2£



31.66: w =2w,.

a) I:K: r .
R*+QuwL——— \/R2+
2a)0C)
1 2
b) V. =IX.= =\/7 v/
20,C o2 9L
- +77
C) VL, —IX —20)0Lﬁ: E V9 7
R +> = R +> =
4 C C
1 Lv?
d) U = ECVCZM = d—
8 |rR2 2 L
C
e) U, =—L[2 =
+i7

31.67: a) p, =i"R=1" cos’(wt)R =V, cos’(wt)) = %VRI(I + cos(2wt))

1y VRl Vel ]
=P (R)= ?jo padt =1 jo (1+ cosQan)de =L 2[1] = V.
b) p, = Li% =—wLI’ cos(wt)sin(wt) = —% V, Isin(2wt).
But jOT sinw)dt = 0= P (L) = 0.
au d(q¢*) gq. . . 1 .
c =—=—|——|==i=v.=V,.Isin(wt)cos(wt) ==V.I sin(2wt).

But jOT sinar)dt = 0 =P, (C) = 0.

d) p=py+p,+p, =Vcos’(wt) —%VLI sin(2wt) +%VC1 sin(2wt)

= P =1 cos(wt)(V, cos(wt) =V, sin(wt) + V. sin(wt)).
Vi : vV, =V

But cos¢ = a and sin¢ = % = p =VI cos(wt)(cos ¢ cos(wt) — sin @ sin(wt)),

at any instant of time.



1
31.68: a) V, =maximum when V. =V, = o = o, zf.
LC

b) From Problem (31.48a), ¥, = maximum when CZVL = 0. Therefore:
()

v, . _d VoL

do ~ do| R+ wL-1/wC)’

0 VL Veo'L(L-1/’C)(L+1/w’C)
JR+(@L -1/ C)’ (R* + (oL -1/ 0C)*)*?

= R+ (0wl -1/ wC)* =0’ (I -1/ 0*C?)

22
:>R2+;—£:—;:>L2:LC—RC == ! :
2 JLC—R*C?/2

=

w’C* C @’ C?

dv,
¢) From Problem (31.48b), V. = maximum when P € =0.Therefore:
®

v, i{ y J
do do| oC\[R* + (oL -1/ 0C)’

14 V(L-1/0*C)YL+1/w*C)
0 CJR +(@l-1/0C)  C(R +(oL-1/wC))"
= R +(wL -1/ wC)* = - (I’ -1/ 0*C?)

=0=

:>R2+a)2L2—2—L=—602L2 S w=,—-



31.69: a) From the current phasors we know that
Z =R +(0L-1/wC)

2
= 7 = _[(400 Q) +| (1000 rad/s)(0.50 H) — ! — =500 Q.
(1000 rad/s)(1.25x10™° F)
==V 2200V 6400 A
Z 5000
R
-6
— = arctan (1000 rad/$)(0.500 H) —1/(1000 rad /s)(1.25x10~° F) | _ 136.9°
400 Q
¢) Z, =R+ i(a)L - Lj
oC
= Z,, =400 Qi (1000 rad/s)(0.50 H) — ! —
(1000rad /s)(1.25x107° F)

=400 Q—300 Qi

= Z = /(400 Q) + (-300 Q)* =500 Q.
d I = Vo_ 200\/. :(8+6sz

" Z, (400-300)Q | 25

= (3OS0 400 AL
25 )\ 25

Im(Z,,) 6/25
Re(l,, 8/25

8+ 6i
f) I/RCpx =IcpxR:(

e) tang =

=0.75= ¢ = +36.9°.

s j (400 Q) = (128 + 96i) V..

v, =il,oL= i(g ;;’j (1000 rad /s)(0.500 H) = (=120 +160i)V.
I .
Vi =i =2 :i(8+6lj 1 = (+192-2560)V -
" wC 25 ) (1000 rad /s)(1.25x10°° F)

&) Vo =V +V, +V,  =(128+96i)V +(~120+160/)V
+(192 - 256i)V = 200 V.



Capitulo 32



8
21 g =42 380 m g
¢ 3.00x10° m/s

b) Light travel time is:
8.61 years = (8.61 years) (365 days) (24 hours) (3600 s)
(1 year) (1day) (1 hour)
d=ct=3.0x10° m/s) (2.72x10% s) =8.16 x 10" m =8.16 x 10" km.

=272x10% s

32.2: d=cAt=(3.0x10° m/s) (6.0x107 s) =180 m.

32.3: l?(z,t) =B_, cos(kz — wt)j = B_.. cos(27zf (i - tn j
c

— B(z1) = (5.80 x 107 T) cos | 27(6.10 x 10™ Hz z —t|lj
(=0=( ) ( ( )((3.00x108m/s) D’

— B(z,t)=(5.80x 10 T) cos (1.28 x 10" m ™)z — (3.83 x 10"* rad/s)r)].
E(z,t) = (B, (z,1)]) x (ck)
— E(zt)=(1.74x10° V/m) cos ((1.28 x 10" m ™)z — (3.83 x 10"* rad/s)y)i.
¢ 3.00x10° m/s

32.4: a) =S o3090X10 WS co0 10 e,
) = T 35 x10 7 m g

-3
by B = Lo _ 27010 V/m

c 3.00 x10° m/s

=9.00x10™" T.

c) The electric field is in the x -direction, and the wave is propagating in the —z-

direction. So the magnetic field is in the —y-direction, since S o E x B.Thus:

E(z,t) =F . cos(kz + w)i = E_ . cos (27rf (E + tj];

c

— E(z,0) = (2.70 x 10~ V/m) cos | 22(6.90x 10" Hz)| t + ——— ||
(50=( ) ( ( )( 3.00 x10° m/s

= E(z,t)=(2.70x10 V/m) cos((1.45x 10" m™)z + (4.34 x 10" rad/s))i.

And B(z,1) = M}' =—(9.00 x10™"? T) cos((1.45 x 10" m™)z + (4.34 x 10"rad/s)?) .
C



32.5: a) +y direction.
8
b) w= 2af :@: - 2me _ 27r(3.00><1120 m/s)
A ®  (2.65x10" rad/s)
¢) Since the electric field is in the — z -direction, and the wave is propagating in the

=7.11x10"* m.

+ y -direction, then the magnetic field is in the — x -direction (§ o E x E). So:

B =—LWD: _ZE0 G —oni = Lo sin@ y — )i
C C C C
- 3.10x10° V/m) . ((2.65x10" rad/s 5
= B(y,t) = —( 1007107 rrf/s j sin (((3 00X 10° m/i)) y—(2.65x%10" rad/s)t}t

= B(y,t)=—(1.03x107 T) sin((8.83 x10° m)y — (2.65 x 10> rad/s)?)i .

32.6: a) —x direction.
4 8
b g2 _2nf :fzﬁz (1.38x10* rad/m) (3.0 x 10* m/s)
A c 2n 2n
¢) Since the magnetic field is in the + y -direction, and the wave is propagating in the

=6.59%x10" Hz.

— x -direction, then the electric field is in the + z -direction (E o E x E). So:

E(x,t) = +¢B(x, 1)k = +cB, sin(ke + 27 )k
— E(x,t) = +(c(3.25x 107 T))sin((1.38 x 10* rad/m)x + (4.14x 10" rad/s)r)k
— E(y,1) = +(2.48 V/m)sin((1.38 x 10* rad/m)x + (4.14 x10"* rad/s)t)k.

¢ 3.00x10° m/s

32.7: a) A=S = g 361 m
f 830x10° Hz
b) k=2F =2 _00174m"
A 36lm

¢) w=2xf=2mn(830x10" Hz) =5.21x10° rad/s.
E._ =cB._ =(3.00x10°m/s) (4.82x10™" T)=0.0145 V/m.

-3
32.8: B, = Lfme 38510 V/m
c 3.00x10° m/s

B : o .
So —* = 1.28x107 T =2.56x107,and thus B, is much weaker than B__, .

B 5107 T

=1.28x10"" T.

earth



B B cB

329: E=vB= = =
\EH \/KEgngﬂo \/KEKB
8 -9
_ p_ (3.00x10 m/s) (3.80 x10 T):0‘779V/m‘
J(1.74) (1.23)
8
32.10: ) ve—C - COXI0MS) (o1 107 mys
VKK, (3.64) (5.18)
7
b) po L o 8OIXI0 sy 05
f 65.0 Hz
-3
o) =Lt 720x10 . Vim | 0ax107 T.
v 691x10" m/s
-3 -10
Q) 1= EB (720107 V/m)(1.04 x10 D) _ 575510 W/m?.
2K 2(5.18)
8
3241 a) a= o 2TXI0T WS S e 07 m,

£ 5.70x10" Hz
8
by 4, =& = 3000 IS o6 107 m,
f 5.70x10" Hz

¢ 3.00x10° m/s

C n=—= :1.38.

) v 2.17x10% m/s

d) ve—ou =K —i—nz—(138)2—190
=Ky . 90.

32.12: a) v=fA=(3.80x10" Hz)(6.15 m) = 2.34 x10°* m/s.

2 8 2
by K, —< - (3.00><1o8 m/s)2 _1ea
v (2.34x10° m/s)

32.13: ) [/ =%80cE§m; E,..=0.090 V/m,s0 I =1.1x10"° W/m’
b) Emax = CBmaX SO Bmax = Emax/c = 30 X10710 T
¢) B, =I1(4m?)=(1.075x10" W/m®)(47)(2.5x10° m)* =840 W

d) Calculation in part (c) assumes that the transmitter emits uniformly in all directions.



32.14: The intensity of the electromagnetic wave is given by Eqn. 32.29:

I=1g,cE}, =¢&,cE.. . Thus the total energy passing through a window of area A during
atime ¢ is

2 At =(8.85x1072F/m) (3.00 x10* m/s) (0.0200 V/m)*(0.500 m*)(30.0 s) =15.9

rms

g,ck

32.15: P, =I(4m”)=(5.0x10° W/m?)(47)(2.0x10"°m)* =2.5x 10> J

32.16: a) The average power from the beam is
P=14=(0.800 W/m*)(3.0x107* m?) =2.4x10™*W
b) We have, using Eq. 32.29, [ =L¢g,cE, =¢&,cE’.. Thus,

max

2
E = |1~ 0800 W/m =174 V/m
gc \(8.85x1077 F/m)(3.00x10° m/s)

32.17: p.,=1/c so I=cp,, =2.70x10° W/m?
Then P, = I(4m*) =(2.70x10° W/m?) (4z) (5.0 m)* =8.5x10° W

¢ _3.00x10° m/s

32.18: a) f = =8.47x10% Hz.
) 0.354m
b) B, —Llm _ 00540 Z/m ~1.80x107°T.
¢ 3.00x10° m/s
-10
O I=5. = EB _ (0.0540 V/m) (1.80 x107°T) _3.87x10° W/m”.

2, 2p,

E2
32.19: P=S, A=—""" -(4m’)=>E, =
2cu, 2

Pep,

2

8
L E - (60.0 W) (3.00><102 m/s)u, 120 V/m.
272(5.00 m)
g =B 120V/m o0 0T

e 3.00x10° m/s



32.20: a) The electric field is in the — y -direction, and the magnetic filed is in the + z -

direction, so § = E x B = (—}) x k = —i. That is, the Poynting vector is in the —x -
direction.
E_ B
b) S(rr) = LB P B o 14 o)
0 Hy

B
= ——" T (1 + cos(2(wt + kx))).
2p,
But over one period, the cosine function averages to zero, so we have:
E B

max ~ max
|Sav | -

2,

2
32.21: a) The momentum density dp _ S_azv __ 780 V&Z/m :
> (3.0x10° m/s)
2
b) The momentum flow rate ldp 5., _ 780 W/m

___=—8 :2.6X1076Pa.
Adt ¢ 3.0x10°m/s

=8.7x10™ kg/m? -s.

S 2
32.22: a) Absorbed light: p., = %P = Su _ 2500 W/m

=2 DT 833410 Pa,
Adt ¢ 3.0x10° m/s
-6
g =—o3X10 P2 g 5310 am.
1.013x10° Pa/atm
2
b) Reflecting light: p ., = Ldp 25, 22500 W/m?) =1.67x10" Pa.

Adt ¢ 3.0x10* m/s
1. 10° P .
= Py = 67 x ? & _1.65x10™"°atm. The factor of 2 arises because the
1.013x10° Pa/atm

momentum vector totally reverses direction upon reflection. Thus the change in
momentum is twice the original momentum.

2
¢) The momentum density 4 _ S—”;” _ 2500 V;//m - =2.78x10™" kg/m”’ .
V. oo¢® (3.0x10° m/s)

3223 S=—20 o [fopr_ |Gop B |fopp_ 1 % pp_
\Eoly Hy Hy ¢ Hy Eoty  Ho

EB E*

Hy  HoC

_ 2
=g,cE”.



a) §=fx(—])=— .

b) S=jxi=—k

) 8=(-k)x(-i)=j

d) S=ix(-k)=]j

32.25: B, =E,, [c=133x10"T

> o - - =
E x B is in the direction of propagation. For E in the +x -direction, E x B is in the +z -

N
direction when B is in the + y -direction.

8
32261 a) A==€ 300x10m/s 00
2 2f  2(75.0x10° Hz)

b) The distance between the electric and magnetic nodal planes is one-quarter of a

wavelength = L _Ar_200m =1.00 m.
4 2 2

8
32.27: a) The node-antinode distance = L =V = 2.10x10 lom/s =438x107m.
4 4f 4(1.20x10" Hz)

b) The distance between the electric and magnetic antinodes is one-quarter of a

8
Wavelength:&— v __2.10x10"m/s =4.38x107° m.

4 4f 4(120x10" Hz)
c) The distance between the electric and magnetic nodes is also one-quarter of a
wavelength=

8
A v 2.10x10° m/s —438x10° m.

4 4f 4(120x10" Hz)

_A_ ¢ _ 3.00x10° m/s
S 2f 2(7.50x10° Hz)
at the planes, which are 80.0 cm apart, and there are two nodes between the planes, each

20.0 cm from a plane. It is at 20 cm, 40 cm, and 60 cm that a point charge will remain at
rest, since the electric fields there are zero.

32.28: Ax =0.200 m = 20.0 cm. There must be nodes

32.29: a) Ax= % — L =2Ax =2(3.55 mm) = 7.10 mm.

b) Ax, =Ax, =3.55 mm.
c) v=fA=(220x10" Hz)(7.10x10” m) =1.56 x10°* m/s.



O’E (x,0) & o 0 :
32.30: a) —— =—(-2E,,, sin kxsin wt) = — (-2kE,,, cos kxsin wr)
ox ox ox
O’E (x,t 2 O’E (x,t
6y—(2) =2k’E,_, sinkxsin ot = a)—ZZEmax sinkxsin ot = &, 1, 8y—(2)
X c ¢
2 2
Similarly: OB, (2x ) _ 86 > (2B, coskxcosawr) = (§(+2chmax sin kx cos at)
X X
0°B_(x,t ? 0°B_(x,t
= Z—(Zx’) =2k’B_, coskxcosmt = 60—2ZBmax coskxcosat = &, U, Z—(zx’)
ox c ot
OE,(x,01) 9 N .
b) ——— =—(-2E_, sinkxsin wt) = —2kE___ cos kxsin wt
ox ox
oF (x,t ) E ) .
= % _—— 2F . coskxsin ot = —w2—"*coskxsinwt = —@2B,__ coskxsin wt.
X c c
oF (x,t B
= L) = +£(2Bmax cos kx cos wt) = —M.
ox Ot Ot
OB, (x,t
Similarly: — 9B, (x,1) = g(+2Bmax coskxcoswt) = —2kB . sinkxcos wt
Ox ox
OB_(x,t . .
= _9B.(x0) = —223max sin kxcos ot = —2220Bmax sin kx cos wt
ox c c
OB_(x,t ) ) ) OF (x,1
= _ZGL’) =—& U,W2E _ sinkxcosot = &,u, %(—2Emax sinkxsinat) = &, 44, yﬁ(t
X

8
32.31: a) Gamma rays: A = ‘= M()nm/s
f 6.50x10" Hz

8
b) Green light : A== = M
f 5.75x10"Hz

=4.62x10" m=4.62x10"° nm.

=5.22%x10"7 m =522 nm.

¢ 3.0x10°m/s

32.32: a) f:X_W=6.OXIO4 Hz.
m
8
by foCo 300 o0y,
A 50m
8
o f=C=30A0ms o100 h.
% 5.0x10° m
8
d) f:ﬁzLojn/Szé.oXmmHz.
A 50x107 m



32.33: Using a Gaussian surface such that the front surface is ahead of the wave front (no
electric or magnetic fields) and the back face is behind the wave front (as shown at right),

we have:

ifE-le:ExA:%:o:Ex:o.
€y

fB-dd=B.A=0=B, =0.
So the wave must be transverse, since there are no components of the electric or
magnetic field in the direction of propagation.

[

E,B#0 B
/

wave front

32.34: Assume E = E,__jsin(kx — wt) and B = B, ksin(kx — wt + §), with — 7 < ¢ < 7.
Then Eq. (32.12) implies:

oE oB

3 L= ——2x = +kE_, cos(kx —wt) =+wB,_ cos(kx — ot + ¢) = ¢ = 0.
X

:>kEmax =a)Bmax:>Emax:23 = 277‘ Bmax=f}\‘Bmax=CBmax'

ko 2/
Similarly for Eq.(32.14)

OE
- % = &,H, G_Iy = —kB,_,, cos(kx — ot + ¢) = —g, u,0E . cos(kx —awt) = ¢ = 0.
X
= kBmax = gO:LlOa)Emax = Bmax = go,uoa) Emax = 2277:7( Emax = ﬁzEmax = lE'max'
k c2r/A c c



32.35: From Eq. (32.12):2 = >
ot Ox ot ot ot

OE (x,t
But also from Eq. (32.14): _82(832(% t)) B 2(80/’!0 L(x )j _
X

OF, (x,t)] Kl (_ OB, (x,t)j _ 0’B.(x,1)

o ) ox ot
0’B_(x,1)
~ St T
0*B_(x,t 0’B._(x,t
N z(2 )280 ) z(zx ).
Oox ot

32.36: E (x,t)=E,,, cos(kx —awt) = u, = %SOEZ = %SOEiax cos(kx — at)

2 E 2 2
=u, = “o€ [ B cos(kx — wt) = ! B’ cos(kx — ot) = B _ u,
2 c 24, 2u,

32.37: a) The energy incident on the mirror is Pt = [At = %EOCE At
1 8 2 4 2 -10
= FE= 550(3.00x 10° m/s)(0.028 V/m) (5.00x10™ m~)(1.00s) =5.20x107"J.
- 21 2 2 -15
b) The radiation pressure p,, =— = &,E° = £,(0.0280 V/m)?* =6.94x10™" Pa.
c

¢) Power P=1-47R* =cp,, 27R’

= P =27(3.00x10° m/s)(6.94x107"° Pa)(3.20 m)> =1.34x10~* W.



8
32.38: a) f=5=M=7.81x10°Hz.
% 0.0384m

E :
by B = s _ 1.35V/m

- T _450x10° T.
¢ 3.00x10° m/s

max

) I =%50cE2 =%50(3.00><108 m/s)(1.35 V/m)® =2.42x10™° W/m".

I4 _EBA _ (1.35V/m)(4.50x10”° T)(0.240 m°)

d) F=pd= . ~1.93x10™ N.
¢ 2uyc 244,(3.00x10° m/s)
-3
32.39: a) The laser intensity / _L_ 4PZ = 4(3'2())(1073 W)2 =652 W/m”.
A D" w(2.50x107 m)
2(652 2
But [ = g,cB’ > E= |22 = | 2 W/;n ) _701V/m.
2 £,C £,(3.00x10° m/s)

E _ 701V/m

And B=—=———""——=234x10"T.
¢ 3.00x10° m/s
b) u, =u; =%80E§m =i50 (701 V/m)* =1.09x10~° J/m>. Note the extra factor

1 . .
of > since we are averaging.

¢) Inone meter of the laser beam, the total energy is:

E,, =u,Vol=2u,(AL) = 2u,7zD* L/4

tot tot

= E_ =2(1.09x10" J/m*)z (2.50x10”m)> (1.00 m)/4 =1.07x10™"'J.

tot



32.40: a) The change in the momentum vector determines p . If W is the fraction

absorbed, AP = Pow— Pin = (1—W)p—(—p) = (2= W) p.Here, (1-W)is the fraction
reflected. The positive direction was chosen in the direction of reflection. p is the
magnitude of the incoming momentum. With Eq. 32.31, and taking the average, we
getp., =(2—-W)L. Be careful not to confuse p, the momentum of the incoming wave,

with p_,, the radiation pressure.

b) (i) totally absorbing W =1so p,_, = é

(i1) totally reflecting W =0so p_, =—

These are just equations 32.32 and 32.33.

3 2
&) W =09,1=140x10"W/m’=> p_, =2 09;%?;}? W) s 13x10Pa
.00 x -

_(2-0.1)(1.40x 10> W/m?)

W=0.1,1=140x10°W/m’ = p_, = - =8.87x10° Pa
3.00x10%
32.41: a) At the sun’s surface:
26
Petd==L- L _ 39 W 10" Wim?

A 47R*  47(6.96x10° m)>
7 2
= p_ =1 -84x10 \gN/m =0.21Pa.
3.00x10° m/s
Halfway out from the sun’s center, the intensity is 4 times more intense, and so is the
radiation pressure: p_ (R, /2) = 0.85 Pa.
At the top of the earth’s atmosphere, the measured sunlight intensity is
1400 W/m? =
5x107° Pa, which is about 100,000 times less than the values above.
b) The gas pressure at the sun’s surface is 50,000 times greater than the radiation

sun

pressure, and halfway out of the sun the gas pressure is believed to be about 6 x 10"

times greater than the radiation, pressure. Therefore it is reasonable to ignore radiation
pressure when modeling the sun’s interior structure.



32.42: a) S (x,t)= %(1 —cos 2 (kx — a)t))f = S(x,t) < 0= cos2(kx — ) > 1,
Hy

which never happens. So the Poynting vector is always positive, which makes sense since

the direction of wave propagation by definition is the direction of energy flow.

b)

:7

dB di do dB di
32.43: B= = — = o= A= und—.
a) B=uni == o = =g A ey
- i dd di di
So, $E -dl =——L£ = E2m =— und—=— unm* —
§ Hy d Ho i
M Fe-_ ,uonrﬂ.
2 dt

b) The direction of the Poynting vector is radially inward, since the magnetic field is
along the solenoid’s axis and the electric filed is circumferential. It’s magnitude

EB _py'ri di

S =
H 2 dt
2 .2 2.2 2,272
c) u= B _ ()" pn T = U =u(l4) = ulm’ _Hm 1
2p, 2p, 2 2
Li? 2U _ pgm’i’la’

But also U = 3 = Li= = u,m’ila’, and so the rate of

i i
2.7 2 ﬂ
dt’
d) The in-flow of electromagnetic energy through a cylindrical surface located at the

. . . o . di .
energy increase due to the increasing current is given by P = Li - Horm”ila

2 . . .
solenoid coils is J. J.S ~dA = S2ral = Hon_at di. 2mal = pym’ila’ ﬂ
2 dt dt
e) The values from parts (c) and (d) are identical for the flow of energy, and hence we
can consider the energy stored in a current carrying solenoid as having entered through its

cylindrical walls while the current was attaining its steady-state value.



32.44: a) The energy density, as a function of x, for the equations for the electrical and
magnetic fields of Egs. (32.34) and (32.35) is given by:

u=¢g,E* =4¢g,E. sin’ kx sin ot

max

V4 7 1 . . T
b) At t=—,cos @t =cos—=—=andsin wf =sin—=—=
4w 4

2 4 2

For 0<x<2—7;,sinloc>0,cos kx>0:>$’=Exl§=—jxl€=—i.

1.00 o~ —

0.80 : / . \
Scaled energy density 0.60
0.40 / \
0.20

/ N
0.00 N
0.00 040 080 1.20 1.60 2.00 240 280
x (/k)
1.00
1 = /4w
0.80 ‘
Scaled energy density 0.60 F————
0.40
0.20
0.00
0.00 040 080 1.20 1.60 2.00 240G 2.80
x (Ik)
T | T
0.80
Scaled energy density 0.60
0.40
0.20
0.00
0.00 040 080 120 1.60 2.00 240 2.80
x (/k)
1.00 =3/
0.80
Scaled energy density 0.60
0.40 //\\
0.20 T ™~
0.00
0.00 040 080 1.20 1.60 2.00 240 2.80
x (k)
1.00
t=mlw
0.80
Scaled energy density 0.60 N
0.40 / \
020 ;
0.00 -

0.00 040 080 1.20 1.60 2.00 240 2.80
x (k)

Andfor%<x<%,sinkx>0,coskx<0:>$’=13“xl§=—}'x k=i
RY/4 kY4 1 . . 37 1
Att=—,coswt =cos— = ——— andsinwt =sin—=—.
4 4 2 4 2
For O <x<2£k,sinkx>0,coskx>0:>$‘=Exl§=j‘><l€=f.

Andfor%<x<%,sinkx>0,coskx<0:>$’=l§‘xl§=}‘x—l:t= —i.

c¢) the plots from part (a) can be interpreted as two waves passing through each other
in opposite directions, adding constructively at certain times, and destructively at others.



ol _pl

y -, in the direction of the current.
ma

3245: a) E=pJ =

b) fﬁ -dl = Uyl = B = g of , counterclockwise when looking into the current.
7a

¢) The direction of the Poynting vector S=ExB=Ikx ¢? =— p, where we have used
cylindrical coordinates, with the current in the z-direction.
EB 1 pl pl _ pI’

Its magnitude is S = — 5 ===
Mo Mo ma” 2ma  27°a

L pl’? Pl
d) Over a length /, the rate of energy flowing inis S4 = ———2mal =——.
2r°a ma
.2 , pl pll? :
The thermal power loss is /"R =1 I = —, which exactly equals the flow of
7

electromagnetic energy.

32.46: B = &’ and ﬁ§ s E-dA=EA= 4 fp-1 -, so the magnitude of the
27 & e
Poynting vector is S = £B B L— dq

2.3 2.3 :
Uy 2e,7mr 2g,mr dt

Now, the rate of energy flow into the region between the plates is:
2 2
J' J-S-dA:S(z;zﬂ): lq . ﬂ:l%wzi lLQZ _dlq |_dU
g dt 2 g dt dt\ 2 g,4 dt\ 2C dt
This is just rate of increase in electrostatic energy U stored in the capacitor.

cB?

32.47: The power from the antenna is P =14 = 2—“‘3"47272. So
Hy
4
= B, =4 2P _ 2”0(5‘30 <10 Wg —2.42x10° T
dmrc 47(2500 m)*(3.00 x 10° m/s)
= % =wB_, =27B_. =27(9.50x10" Hz) (2.42x107"° T) =1.44 T/s
2 2
e _do —Ad—B: zD” dB _ 7(0.180 m)”(1.44 T/s) —0.0366 V.

dt dt 4 dt 4

=242 V/m.

21 [2(2.80x10° W/36 m*)
£,(3.00 x 10° m/s)



32.49: a) Find the force on you due to the momentum carried off by the light:
Poa =1/cand F=p_, A gives F=1A/c=P,/c

a, =F/m= P, [(mc) = (200 W)/[(150 kg)(3.00x10* m/s)] = 4.44x10~° m/s>

Then x — x, = v, t + a t’ givest =2(x — x,)/a, = \/2(16.0 m)/(4.44x107° m/s”) =
8.49x10*s=23.6h
The radiation force is very small. In the calculation we have ignored any other forces on
you.

b) You could throw the flashlight in the direction away from the ship. By conservation

of linear momentum you would move toward the ship with the same magnitude of
momentum as you gave the flashlight.

32.50: P= 1A:>1_P=lgocE2:>E 2P _ |2V
A Aegyc Aeg,c
5
. 25,00 <10 V) 1000 A) _ ¢ 1y
Ago (100 m*)g,(3.00 x 10° m/s)

And

4
2526.14x108\//m:2_05x104 .
¢ 3.00x10° m/s

GMgm _ GM 47rR3p 47GM (R’ P

r’ r’ 3 3r?

b) Assuming that the sun’s radiation is intercepted by the particle’s cross-section, we
can write the force on the particle as:

14 L 7#R* LR?
F = —_—= - = 5.
c 47r c 4cr

32.51: a) F, =

c¢) So if the force of gravity and the force from the radiation pressure on a particle from
the sun are equal, we can solve for the particle’s radius:

47GM(R’p LR’ ro_ 3L

2

3r Taer T 162GM s pc
B 3(3.9%x10% W)

167 (6.7x10™"" N-m?/kg?) (2.0 x 10% kg) (3000 kg/m?) (3.0 x 10° m/s)
=R=19x10" m.

d) If the particle has a radius smaller than that found in part (c), then the radiation
pressure overcomes the gravitational force and results in an acceleration away from the
sun, thus removing all such particles from the solar system.

F.=F=




32.52: a) The momentum transfer is always greatest when reflecting surfaces are used
(consider a ball colliding with a wall—the wall exerts a greater force if the ball rebounds
rather than sticks). So in solar sailing one would want to use a reflecting sail.
b) The equation for repulsion comes from balancing the gravitational force and the
force from the radiation pressure. As seen in Problem 32.51, the latter is:
F = 2L124 Thus: F, = F, = GMsz _ 2L124 N 4nGM gmc
4mr-c r 4mrec 2L
_47(6.7x10™" N-m?/kg?) (2.0 x 10% kg) (10000 kg) (3.0 x 10° m/s)
- (2)3.9x10*° W
_ 6.48km’
(1.6 km/mile)>
c) This answer is independent of the distance from the sun since both the gravitational

force and the radiation pressure go down like one over the distance squared, and thus the
distance cancels out of the problem.

=4

= 4 =6.48%x10° m* = 6.48 km* =2.53 mi®

2 2 2 252
32.53:3){qa }_ C*(m/s") _Nm _J

_ - —:w:[d—E]
(C*/N-m?)(m/s)’ s s dt
b) For a proton moving in a circle, the acceleration can be rewritten:
. =ﬁ _ Lmy? _ 2(6.00x10° eV) (1.6 x 107" J/eV) 1.53%10" m/s’.
R 1mR (1.67 x107 kg) (0.75 m)
The rate at which it emits energy because of its acceleration is:
dE _ q¢’a® _(1.6x107°C)*(1.53x10" m/s*)’
dt — 6me,c’ 676,(3.0x10° m/s)?
=8.32x107 eV/s.
So the fraction of its energy that it radiates every second is:
(dE/dr)(1s) 8.32x107 eV
E  6.00x10°eV

c¢) Carrying out the same calculations as in part (b), but now for an electron at the same
speed and radius. That means the electron’s acceleration is the same as the proton, and
thus so is the rate at which it emits energy, since they also have the same charge.
However, the electron’s initial energy differs from the proton’s by the ratio of their
masses:

67g,C’

=1.33x107" I/s

=1.39x107",

=31
m, — (6.00x10° eV) (9.11x10 _ kg)
m (1.67x107" kg)

P
So the fraction of its energy that it radiates every second is:
(dE/dr)(1s) 8.32x10™ eV
E 3273 eV

E,=E, =3273eV.

=2.54x10".




32.54: For the electron in the classical hydrogen atom, its acceleration is:
. =ﬁ _ Tmy? _2(13.6 eY)(1.6O><10_19 J{eV) —9.03x10% m/s’.
R 1mR (9.11x107" kg)(5.29x107" m)
Then using the formula for the rate of energy emission given in Pr. (33-49):
dE _ ¢’a> (1.60x107°C)*(9.03x10” m/s’)’
dt 67g,c’ - 6ms,(3.00x10° m/s)’

= Cfl_f =4.64x10"° J/s =2.89x10" eV/s, which means that the electron would almost

immediately lose all its energy!

32.55: a) E, (x,1)=E,e " sin(kx— ar).

O L
3 L=FE_ (ke sin(k,x—awt)+E_,
x

0’E R
~=F_ (+k)e " sin(k,x —wt)+ E

2 max
+ Emax (_kcz )e—kfx COS(ka - a)t) +F
=-2E__k’e™" cos(k,x — o).

max ¢

(+k,)e ™" cos(k,x — wt).

(=k2)e ™ cos(k,x — wt)

max

(=k2)e ™ sin(k x — wt)

max

aE —k.x
L=F . e " ocos(kx—ar).
ot
O’E, ok, ) s s o
Set —-= =2E_ ke cos(k,x—awt)=E e wcos(kx—ot). This will
ox POt
2
only be true if 2k _ 4 ork, = 2k
o P 2p

b) The hint basically answers the question.

E -8
c) Ey=—y0:kcx=1,x=L= 2—’0=\/ 2(1.72x10~ Qm) =6.60x10"m.
\ ou

e k 27(1.0x10° Hz) 4,

c



Capitulo 33



c _3.00 x10"m/s

33.1: a)v=—= =2.04 x10°* m/s.

n 1.47

-7
byr=re 2000 Wy 107 m
n 1.47
8
33.2: a) xmum=£=w=5.17x10” m.
£ 5.80x10" Hz
¢ 3.00x10°m/s

Ay =— = =3.40x107 m.
b) Tl TG T (5.80 x 10" Hz)(1.52)

L€ _300x10"m/s o,
333: &) U, T 104x10° ms

b) Ay =nk=(1.54)(3.55x107 m)=5.47x10" m.

}\’walernwater — (438 X 10_7 m)(1333)
1.501

33.4: }\’waternwater = }\’BenzenenBenzene = }\’CSZ =
Benzene

33.5: a) Incidentand reflected angles are alwaysequal = 8’ =6’ = 47.5°.

b 6, = z_ 0, = Z _ arcsin| 2« sin 0, |= Z _ arcsin @sin 42.5° | = 66.0°.
) 2 2 2 1.66

n,

d 2.50 m g
33.6: V=7=m=2.17><10 m/s

8
c_ 3.00><108 m/s 138
v 2.17x10° m/s

33.7. N,sin6, =n,sinb,

n, =n | S0, =1.00(—S?n 62.7 j: 1.194
sin g, sin48.1°

n=c/vsov=c/n=(3.00x10° m/s)/1.194 =2.51x 10° m/s




33.8 (a)

air glass methanol

Apply Snell’s law at both interfaces.

33.9: a) Let the light initially be in the material with refractive index n, and let the third
and final slab have refractive index n, Let the middle slab have refractive index n;

Istinterface:n, sin@, = n, sin g,
2nd interface : n, sin 6, = n, sin 6,
Combining the two equations gives n, siné, = n, sin6,.

b) For N slabs, where the first slab has refractive index n, and the final slab has
refractiveindex n,,n,sin@, = n, sin6,, n,sinf, =n,sinb,, ..., n, ,sinb, , =n, sin ,.
This gives n, sin 8, = n, sin @,. The final direction of travel depends on the angle of
incidence in the first slab and the indicies of the first and last slabs.

33.10: a) 0, = arcsin( nna“ sin Qairj = arcsin(% sin 35.0°j =25.5°.

water

b) This calculation has no dependence on the glass because we can omit that step in the
chain:n sinf,, =n, sinf N, SINE

glass glass — "“water water *

33.11: As shown below, the angle between the beams and the prism is A/2 and the angle
between the beams and the vertical is A, so the total angle between the two beams is 2A.

RN

Af2 Al2



33.12: Rotating a mirror by an angle& while keeping the incoming beam constant leads
to an increase in the incident angle ¢ by . Therefore the angle between incoming

and outgoing beams becomes 26 + 2¢ where an additional deflection of 26 arose from the

mirror rotation.

33.13: 0, = arcsin :—“sinﬁa = arcsin (% sin 62.00] =71.8°.
b .

[ n, . . (1.33 . o
33.14; ¢, =arcsin| —=sing, | =arcsin (E sin 45.0 ] =38.2. But this is the angle

n,

from the normal to the surface, so the angle from the verticalis an additional 15° because of

the tilt of the surface. Therefore the angleis 53.2°.

33.15: a) Going from the liquid into air:

M Ging. = n =00 48,
n sin 42.5°

a

So: 6, = arcsin (n—“ sin HaJ = arcsin (% sin 35.0°) =58.1°.

n,

b) Going from air into the liquid:
0, = arcsin (n—“ sinﬁaj = arcsin (% sin 35.0°j =22.8°.

n
33.16:
air R
= g
Nt :
Water N : //
A8
\\\;//
Ring ~/

If @ > critical angle, no light escapes,
so for the largest circle, 0 = 6,
n,sin@, =n_ sin90° = (1.00)(1.00) =1.00

0. =sin"'(1/n,)=sin"' " ! 3 48.6°
tand, = R/10.0m - R =(10.0 m) tan48.6°=11.3m

A=7nR* =7 (13.3m)* =401 m’



33.17: Forglass — water, 0, =48.7°
i i I.
n,$in0, =, 5in90°, 5o, =" =201 77
Sin 0crit S1n48~70
33.18: (a)
A
air /air

e\
B n 9 a c
Total internal reflection occursat AC: n sin@ = (1.00)sin 90° =1.00
(1.52)sin 0 =1.00
0=41.1°
a+60=90°—>a=90°—-41.1°=48.9°
If « is larger, @ is smaller and thus less than the critical angle, so this answer is the
largest that « can be.

(b) Same approach as in (a), except AC is now a glass-water boundary.
nsin@ =n_sin 90°=1.333

1.52sin6 =1.333

0=613°
a=90°—-61.3°=28.7°

33.19: a) The slower the speed of the wave, the larger the index of refraction—so air has a larger index
of refraction than water.

b) 6, =arcsin My = arcsin air_ = arcsin Lm/s =15.1°.
n % 1320 m/s

a
c) Air. For total internal reflection, the wave must go from higher to lower index of refraction—in this
case, from air to water.

water

33.20: 4, = arcsin " | = aresin 100 =24.4°.
n 242

a

33.21:a) tan 6, = > = tan 54.5° =1.40 = n, = 1.40.
n

a

na

b) 6, =arcsin ( sin Haj = arcsin (% sin 54.5°] =35.6°.

n,



33.22 : From the picture on the next page, & =37.0°, and so:

p,—n SO0 33553° 4,
sin 6, sin 37°
53¢ 53¢
a 37°
b
53°
-
3323:0) tng, =" mn = - 00 _j6s
n, tan 6, tan31.2°

b) 6, =arcsin (n—“ sin Qaj = arcsin (% sin 31.20] =58.7°.

n,

33.24:a) Inair@ = arctan " |~ arctan (ﬂj =58.9°.
’ n 1.00

a

b) In water 6, = arctan [&J = arctan (%) =51.3°.

n

a

33.25: a) Through the first filter: /, = %1 0-

The second filter: 7, = lIO cos’(41.0°) = 0.2851,.
2

b) The light is linearly polarized.
33.26:a) I=1_cos’p=1=1_ cos’(22.5°)=0.8541

b) I=1_cos’¢=1=1I_ cos*(45.0°)=0.5001_,
¢) I=1_cos’¢g=1=1_ cos’(67.5°)=0.1461_

33.27 : After the first filter theintensityis 7, =10.0 W/m? and the light is polarized
along the axis of the first filter. The intensity after the second filter is = I, cos’¢@, where
I, =10.0 W/m? and w = 62.0° — 25.0° = 37.0°. Thus, / = 6.38 W/m?.



33.28: Let the intensity of the light that exits the first polarizer be /;, then, according to repeated
application of Malus’ law, the intensity of light that exits the third polarizer is

75.0 W/em? = I, cos®(23.0°) cos®(62.0° — 23.0°).
75.0 W/cm?
cos?(23.0°) cos” (62.0°—23.0°)°

on the third polarizer after the second polarizer is removed. Thus, the intensity that exits the third polarizer
after the second polarizer is removed is

75.0 W/cm? cos®(62.0°)
c0s’(23.0°) cos*(62.0° —23.0°)

So wesee that /, = which is also the intensity incident

=32.3W/cm?.

33.29:a) [, = %10, I, = %Jocos2(45.0°) =0.2501,, I, = I,cos*(45.0°) = 0.1251,,.

b) I, = %10, I, = %10c0s2(9o.00) =0.

33.30: a) All the electric field is in the plane perpendicular to the propagation direction,
and maximum intensity through the filters is at 90° to the filter orientation for the case of
minimum intensity. Therefore rotating the second filter by 90° when the situation
originally showed the maximum intensity means one ends with a dark cell.

b) If filter P, is rotated by 90°, then the electric field oscillates in the direction pointing
toward the P; filter, and hence no intensity passes through the second filter: see a dark
cell.

c) Even if P, is rotated back to its original position, the new plane of oscillation of the
electric field, determined by the first filter, allows zero intensity to pass through the
second filter.

33.31: Consider three mirrors, M, in the (x,y)-plane, M, in the (y,z)-plane, and M5 in the
(x,z)-plane. A light ray bouncing from M, changes the sign of the z-component of the
velocity, bouncing from M> changes the x-component, and from M3 changes the y-
component. Thus the velocity, and hence also the path, of the light beam flips by 180°

33.32: a) Hb = arcsin [ﬂ sin Haj = arcsin [v_b sinHaj = arcsin [1344840

n, v

a

344 j =13.4°.
80

b) 6, = arcsin Yo |2 arcsin(
14

Vp

sin 9.73") =46.6°.

33.33: a) n,sind, = n,sin6, and n, sin@, = n, sin,, so n, sinf, = n, sin b,
sin@, = (n,sinf,)/n, b) n,siné;, =n,siné, and n,sin, =n, sinb,, so n, sinf, =
n, sin @, and the light makes the same angle with respect to the noral in the material with
n, as it did in part (a).

c) For reflection, 8, = 60,. These angles are still equal if 6, becomes the incident
angle; reflected rays are also reversible.



33.34: It takes the light an additional 4.2 ns to travel 0.840 m after the glass slab is
mserted into the beam. Thus,
0.840m 0.840 m 0.840 m
- =(m-1) =

4.2 ns
c/n c c

We can now solve for the index of refraction:
G 107s) (3.00x10° m/s) o

=2.50.
0.840 m
The wavelength inside of the glass is
=200 196 1m ~ 200 nm.
2.50

33.35: 6, =90° —arcsin [&J =90° —arcsin [%) =43.6°,

n,

But n,sin@, =n, sin@, = @, = arcsin (Mj = arcsin [13851“1—5336)j =72.1°.
n .

a

33.36: n, sinf, =n,sinf, =n, sin(%")

= (1.00) sin@, =sin 2 9 =2sin 9 cos 9, =(1.80) sin 9
2 2 2 2

= 2 cos (%) =(1.80) = 6, =2 arccos (%] =51.7°.

33.37: The velocity vector “maps out” the path of the light beam, so the geometry as
shown below leads to:

va , vr, . .
v,=v, and 8, =60 = arccos| —- |=arccos| — |=v, =-v,, with the minus
v, v, ! ’
. . . . . . ‘}ar . V}’,(
sign chosen by inspection. Similarly, = arcsin (—J = arcsin (—J =V, =v,.
% % ! )

a r



d

. d —
33.38:40 = (H),, + (1), = Jar e ) (0.0180 m O.?70250 m) N O.OOZSOJm y
¢ A A 5.40x10""'m 540x107" m
(1.40) =3.52x10",
33.39:6_,, = arctan (0.00534 m)/2 | _ 40.7° = arcsin | 2 | = arcsin (ﬂj =>n=— !
0.00310 m n, n sin(40.”

Note: The radius is reduced by a factor of two since the beam must be incident at &__, the

crit ?

on the glass-air interface to create the ring.

33.40: 6, =arctan Lom)_ 51°
1.2m

= 6, = arcsin ﬂsinﬁa = arcsin (ﬂ sin 5 loj =36°.
n, 1.33

So the distance along the bottom of the pool from directly below where the light
enters to where it hits the bottom is:

x =(4.0 m) tan 6, = (4.0 m) tan 36° =2.9 m.

=x. . =1.5m+x=15m+29m=44m.

total

3341 0, = arctan( 8.0 cm j =27°and 0, = arctan( 4.0 cm j =14°.

16.0 cm 16.0 cm
So, n,sin@, =n,sinf, = n, = i .s1n % |- (1.09s1n 27 j =1.8.
sin 6, sin 14°

33.42: The beam of light will emerge at the same angle as it entered the fluid as seen by
following what happens via Snell’s Law at each of the interfaces. That is, the emergent
beam is at 42.5° from the normal.

33.43: a) 6, = arcsin n, sin90° = arcsin 1.000 =48.61°.
n, 1.333

The ice does not come into the calculation sincen,, sin90° =n, sin6, =n, sind,.
b) Same as part (a).

ino 335in90°
33.44: 1 sin@, =n, sin@, = n, =| 2S00 | (1335907}, o
sin@, sin 45°



33.45: n, sinf, =n,sinf, = 0, = arcsm(_na sSno, J

n,

. (1.66sin(25.0°)
=arcesm| ———
1.00

So the angle below the horizontal is 6, — 25.0° = 44.6° — 25.0° =19.6°, and thus
the angle between the two emerging beams is 39.2°.

j =44.6°.

33.46: 1 sing, =n,sing, = n_ | 2S00 |_[162sn607) 0
sind, sin 90°

in6 525sin 57.2°
33.47: n, sin@, =n, sin@, = n, =| 2S00 | _[1.52857.27) _, o0
sing, sin 90°

33.48: a) For light in air incident on a parallel-faced plate, Snell’s Law yields:
nsin@, =n'sin@, =n'sind, =nsind =sind, =sind, =6, =06..

b) Adding more plates just adds extra steps in the middle of the above equation that
always cancel out. The requirement of parallel faces ensures that the angle 6’ =6, and

the chain of equations can continue.
c¢) The lateral displacement of the beam can be calculated using geometry:

t :>d=tsin(9a —91;).

!

!
cosd, cosd,

d) 6, = arcsin (nsm s j = arcsin (Mj =30.5°
n' 1.80

d=Lsin(@, —6)) and L=

_ (2.40 cm) sin(66.0° — 30.5°)
co0s30.5°

=d =1.62 cm.

33.49: a) For sunlight entering the earth’s atmosphere from the sun BELOW the
horizon, we can calculate the angle o as follows:

n,sin@, =n,sind, = (1.00) sind, = nsin@,, where n, = n is the atmosphere’s
index of refraction. But the geometry of the situation tells us:

sin9b=iz>sin9a= nR = 0 =0, — 6, =arcsin nR — arcsin R .
R+ R+h R+h R+h
6 6
b) & = arcsin (1.00?3)(6.4x10 rr41) _ aresin 66.4><10 m : -
6.4x10" m+2.0x10" m) 64.x10° m+2.0x10" m

0 =0.22°. This is about the same as the angular radius of the sun, 0.25°.



33.50: A quarter-wave plate shifts the phase of the light by 8 = 90°. Circularly polarized
light is out of phase by 90°, so the use of a quarter-wave plate will bring it back into
phase, resulting in linearly polarized light.

33.51: a) / :%]0 cos” @ cos’(90° - ) zélo(cosé’siné’)2 :élo sin” 26.

b) For maximum transmission, we need 26 = 90°, so 6 = 45°.

33.52: a) The distance traveled by the light ray is the sum of the two diagonal segments:
1/2 1/2
dz(x2 +y12) +((l—)c)2 +y22) .
Then the time taken to travel that distance is just:
d_@ )+ (-0 +2)"
c c
b) Taking the derivative with respect to x of the time and setting it to zero yields:

=

%:%% [(xZ )+ -x)? +y§)”2]
:%:é[x(xz R (R R =

N X _ (I—x)
Pyl JU-x)? 4yl

= sinf, =sinf, = 0, =6,.

33.53: a) The time taken to travel from point A to point B is just:
dd, Jh+x . VA2 + (1 -x)

t = — 44— =
i Y, Vi Va
Taking the derivative with respect to x of the time and setting it to zero yields:
a _,_ 4 VA +x° +Wl§ +(-0" 1 x (-
dx dt Vi V) vl\/hl2 +x° vz\/hz2 +(I-x)’

nx  n(l-x)

c c
But v, =—and v, =—

= = = n, sinf, =n, sind,.
m ny B ext R+ (- x)’




33.54: a) n decreases with increasing A, so n is smaller for red than for blue. So beam a
is the red one.
b) The separation of the emerging beams is given by some elementary geometry.
X

x=x,—x, =dtan6 —dtanf, = d = ————, where x is the vertical beam
tand —tand,
. 1.00 mm
separation as they emerge from the glass x = Sn20° = 2.92 mm. From the ray
sin

geometry, we also have

sin 70°

0, = arcsin sin 70
1.61

=35.7° and @, = arcsin
1.66

j: 34.5°,s0:

X 2.92 mm

= = =9cm.
tand —tan@d, tan35.7°—tan34.5°

33.55: a) n,sin@, =n,sind, = sinf, =n, sing.

A+2a . A

=nsin—.
2

But 4, =§+a:>sin(§+aj=sin

At each face of the prism the deviation is &, so 2a = 0 = sin

b) From part (a), 0 =2arcsin (n sin gj -4

60.0°

= 0 =2arcsin ((1.52) sin J— 60.0° =38.9.

c¢) Iftwo colors have different indices of refraction for the glass, then the deflection
angles for them will differ:

5., = 2arcsin ((1.61) sin 200

J —-60.0°=47.2°

S 60.0

violet

= 2arcsin ((1.66) sin )— 60.0°=52.2°= A0 =52.2°-47.2°=5.0°.



33.56:

A
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e , B
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o
Ty /

o ot i ) >

Direction of ray A: @ by law of reflection.
Direction of ray B:
At upper surface: n,sinf = n, sina
The lower surface reflects at . Ray B returns to upper surface at angle of
incidence o :n, sina = n, sin ¢
Thus
n,sin@ = n, sin ¢
p=0
Therefore rays A and B are parallel.

33.57: Both /-leucine and d-glutamic acid exhibit linear relationships between
concentration and rotation angle. The dependence for /-leucine is:

Rotation angle (°) =(~0.11°100ml/g)C(g/100 ml), and for d - glutamic acid is :
Rotation angle (°) = (0.124°100 ml/g)C(/100 ml).

33.58: a) A birefringent material has different speeds (or equivalently, wavelengths) in
two different directions, so:

A A A
7\’1=_0and}\‘2:_0:2:2+l M:M l:D=—O
n, n, A A, 4 Ao A, 4 4(n, —n,)
-7
b) D=— 0 >8I0 M _ o107 m,

4(n,—n,)  4(1.875-1.635)



33.59: a) The maximum intensity from the table is at & =35°, so the polarized

component of the wave is in that direction (or else we would not have maximum intensity
at that angle).

b) At 0=40°:7=24.8 W/m” = %10 +1, cos? (40°-35°)
=248 W/m’ =0.500 7, +0.9961,, (1).
1
At 0=120°:1=52 W/m® = S0+, cos®(120° — 35°)

=52 W/m’ =0.5007, +7.60x107°1, (2).
Solving equations (1) and (2) we find:

=19.6 W/m” =0.989/, =1, =19.8 W/m".
Then if one subs this back into equation (1), we find:

5.049 = 0.500/, = I, =10.1 W/m".

33.60: a) To let the most light possible through N polarizers, with a total rotation of 90°,
we need as little shift from one polarizer to the next. That is, the angle between

successive polarizers should be constant and equal to % Then:
V4 T V4
I, =1, cos’ (ﬁj’ I, =1, cos" (ﬁj ,oo=>1=1,=1,co8™" (Ej
2 n
b) If n>>1, cos” 9:(1—%+~-~j =1—§92 T

2 2
= cos”(lj r 1—@ (Lj 1-7 & 1, for large N.
2N 2 \2N 4N



33.61: a) Multiplying Eq. (1) bysinf and Eq. (2) by sin « yields:

X . . : : :
(1):—sin S =sin wt cos o sin f — cos wt sin a sin S
a

(2): Y sina = sin ot cos fsina —cos @t sin fsina
a

xsin f—ysina
a
b) Multiplying Eq. (1) by cos f# and Eq. (2) by cosa yields:

Subtracting yields: =sinwt(cosasin f —cos Bsina).

X : :
(1): —cos f =sinwtcosa cos f — coswt sina cos
a

(2) -2 cosa = sinar cos ffcosa —coswt sin ffcosa
a

) . xcos f—ycosa . :
Subtracting yields: p-y =—coswt(sinacos f—sin fcosa).
a

(c) Squaring and adding the results of parts (a) and (b) yields:
(xsin f—ysina)® + (x cos f— y cosa)’ =a’(sina cos ff—sin B cosa)’
(d) Expanding the left-hand side, we have:
x*(sin® B +cos® B)+ y*(sin® a +cos” @) — 2xy (sina sin S+ cosa cos 3)
=x+y* —2xy (sina sin B+ cosa cos B) = x> + y*> —2xy cos(a — ).
The right-hand side can be rewritten:
a’(sinacos B —sin fcosa)’ =a’ sin’ (a— ).
Therefore: x> + y*> —2xy cos(a — ) = a” sin*(a — B).

Or: x> +y* —2xycosd =a’sin’ §, where 6 = a — f.

(©)d=0:x>+y>-2xy=(x—y)> =0= x =y, which is a straight diagonal line.
2

5= % x? 4+ 2 =23y = %, which is an ellipse.

5= % x>+ y> =a’,which is a circle.

This pattern repeats for the remaining phase differences.



33.62: a) By the symmetry of the triangles, 6,' =87, and 0 =0” =0” =9,
Therefore, sin@; =nsind¢ =nsind,' =sind’ =0 =0
b) The total angular deflection of the ray is:
A=0"-0!+7-20" +0f —0° =20" 40, + .

¢) From Snell’s Law, sin@,' = nsing,' = ;' = arcsin (l sin Hfj
n

= A=20"-40," + 7 =20 — 4arcsin (lsinﬁfj+ﬂ.

n
d) dAA =0=2-4 dA arcsin(lsinefj —0=2— 4 .(coselj
dga d@a n m "

2 2

s 2 1 2
:>4(1—Sln 91]:( bcos Hlj:>4cos201 =n’ —1+cos’ 0,
n n

=3cos’ 0, =n> —1=>cos’ 6§, =%(n2 -1).

e) For violet: 8, = arccos [1%(# — 1)] = arccos (1 /%(1.3422 — 1)] =58.89°

= A, =1392°= 6, =40.8°.

violet
For red: 6, = arccos (1 /%(n2 — I)J = arccos [1 /%(1.3302 — I)J =59.58°

=A,,=1375°=0_, =42.5°
Therefore the color that appears higher is red.



33.63: a) For the secondary rainbow, we will follow similar steps to Pr. (34-51). The
total angular deflection of the ray is:

A=0!-0+7-20+7-20,+0 -0, =20 —60; + 27, where we have used
the fact from the previous problem that all the internal angles are equal and the two
external equals are equal. Also using the Snell’s Law relationship, we have:

0, = arcsin (1 sin Hfj :
n

= A=20"-60,"+27 =20 - 6arcsin (l sin93j+ 27.

n
b) dAA =0=2-6 dA (arcsm(lsinejj]:o:z_ 6 _(cosezj
e @, " sz 0w\ n

= n*(1-sin’ 6, /n*) = (n> —1+cos’ 6,) =9cos’ O, = cos’ b, zé(nz -1).

c¢) For violet: 8, = arccos (1/%(112 - 1)] = arccos (1%(1.3422 - I)J =71.55°

= A, =2332°=0,, =532°

For red: 6, = arccos [1 Ié(nz - 1)} = arccos (1 I%(1.3302 - 1)J =71.94°

=A,,=230.1°=6_, =50.1°.
Therefore the color that appears higher is violet.

violet



