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Capítulo 22 



22.1: a) C.Nm75.160cos)m(0.250 N/C)14(
22 =°=⋅=Φ AE
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 b) As long as the sheet is flat, its shape does not matter. 

 ci) The maximum flux occurs at an angle °= 0φ between the normal and field. 

 cii) The minimum flux occurs at an angle °= 90φ  between the normal and field. 

In part i), the paper is oriented to “capture” the most field lines whereas in ii) the 

area is oriented so that it “captures” no field lines. 
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 b) The total flux through the cube must be zero; any flux entering the cube must also 

leave it. 

 

 

22.3: a) Given that lengthedge,,ˆDˆCˆB AEkjiE
rrr
⋅=Φ−+−= L, and 

.BLˆˆˆ

.BLˆˆˆ

.DLˆˆˆ

.CLˆˆˆ

.DLˆˆˆ

.CLˆˆˆ

2

6

2

5

2

4

2

3

2

2

2

1

66

55

44

33

22

11

+=⋅=Φ⇒−=

−=⋅=Φ⇒+=

+=⋅=Φ⇒−=

+=⋅=Φ⇒+=

−=⋅=Φ⇒+=

−=⋅=Φ⇒−=

SS

SS

SS

SS

SS

SS

A

A

A

A

A

A

nEin

nEin

nEkn

nEjn

nEkn

nEjn

r

r

r

r

r

r

 

 b) Total flux ∑ =
=Φ=

6

1 i 0
i

 

 

 

22.4: C.Nm16.670cos)m(0.240)CN0.75( 22 =°=⋅=Φ AE
rr

 

 

 



22.5: a) C.Nm1071.2)2( 25m)(0.400C/m)1000.6(

2 0

6

00
×====⋅=Φ

−×λλ
εε

l
rπε

πrlAE
rr

 

 b) We would get the same flux as in (a) if the cylinder’s radius was made larger—the 

field lines must still pass through the surface. 

 c) If the length was increased to m,800.0=l  the flux would increase by a factor of 

two: C.Nm105.42 25×=Φ  
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 f) All that matters for Gauss’s law is the total amount of charge enclosed by the 

surface, not its distribution within the surface. 
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 c) No. All that matters is the total charge enclosed by the cube, not the details of 

where the charge is located. 

 

 

22.8: a) No charge enclosed so 0=Φ  
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22.9: a) Since E
r
 is uniform, the flux through a closed surface must be zero. That is: 
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 But because we can choose any volume we 

want, ρ  must be zero if the integral equals zero. 

 b) If there is no charge in a region of space, that does NOT mean that the electric field 

is uniform. Consider a closed volume close to, but not including, a point charge. The field 

diverges there, but there is no charge in that region. 

 

 



22.10: a) If 0>ρ  and uniform, then q inside any closed surface is greater than zero. 

∫ >⋅⇒>Φ⇒ 00 AE
rr

d  and so the electric field cannot be uniform, i.e., since an 

arbitrary surface of our choice encloses a non-zero amount of charge, E  must depend on 

position. 

 b) However, inside a small bubble of zero density within the material with density ρ , 

the field CAN be uniform. All that is important is that there be zero flux through the 

surface of the bubble (since it encloses no charge). (See Exercise 22.61.) 
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symmetrical, so for one side, the flux is: .CNm1080.1 25
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 b) No change. Charge enclosed is the same. 

 

 

22.12: Since the cube is empty, there is no net charge enclosed in it. The net flux, 

according to Gauss’s  law, must be zero. 

 

 

22.13: 0encl εQE =Φ  

The flux through the sphere depends only on the charge within the sphere. 
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 b) 0=E
r

 inside of a conductor or else free charges would move under the influence of 

forces, violating our electrostatic assumptions (i.e., that charges aren’t moving). 
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 b) As long as we are outside the sphere, the charge enclosed is constant and the sphere 

acts like a point charge. 
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22.18: Draw a cylindrical Gaussian surface with the line of charge as its axis. The 

cylinder has radius 0.400 m and is 0.0200 m long. The electric field is then 840 N/C at 

every point on the cylindrical surface and directed perpendicular to the surface. Thus 

    ∫ ==⋅ )2)(())(( cylinder πrLEAEd sE
rr

 

             /CmN42.2m)(0.0200m)(0.400)(2N/C)840( 2⋅== π  

The field is parallel to the end caps of the cylinder, so for them 0=⋅∫ sE
rr
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Gauss’s law: 
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22.20: a) For points outside a uniform spherical charge distribution, all the charge can 

be considered to be concentrated at the center of the sphere. The field outside  the sphere 

is thus inversely proportional to the square of the distance from the center. In this case: 
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 b) For  points outside a long cylindrically symmetrical charge distribution, the field is 

identical to that of a long line of charge: 
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that is, inversely proportional to the distance from the axis of the cylinder. In this case 
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 c) The field of an infinite sheet of charge is ;2/ 0εσE =  i.e., it is independent of the 

distance from the sheet. Thus in this case .CN480=E  

 

 
22.21: Outside each sphere the electric field is the same as if all the charge of the sphere 

were at its center, and the point where we are to calculate E
r
 is outside both spheres. 

21 and EE
rr
 are both toward the sphere with negative charge. 
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22.22: For points outside the sphere, the field is identical to that of a point charge of the 

same total magnitude located at the center of the sphere. The total charge is given by 

charge density ×  volume: 
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 a) The field just outside the sphere is 
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 b) At a distance of  0.300 m from the center (double the sphere’s radius) the field will 

be 1/4 as strong: 10.6 CN  

 c) Inside the sphere, only the charge inside the radius in question affects the field. In 

this case, since the radius is half the sphere’s radius, 1/8 of the total charge contributes to 

the field: 
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22.23: The point is inside the sphere, so 3/ RkQrE = (Example 22.9) 
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22.24: a) Positive charge is attracted to the inner surface of the conductor by the charge 

in the cavity. Its magnitude is the same as the cavity charge: nC,00.6inner +=q  since 

0=E  inside a conductor. 

 b) On the outer surface the charge is a combination  of the net charge on the conductor 

and the charge “left behind” when the nC00.6+  moved to the inner surface: 

nC.1.00nC6.00nC00.5innertotouterouterinnertot −=−=−=⇒+= qqqqqq  

 

 

22.25: 32 SandS  enclose no charge, so the flux is zero, and electric field outside the 

plates is zero. For between the plates, 1S  shows that: .000 εσEεAσεqEA =⇒==  

 
 



22.26: a) At a distance of 0.1 mm from the center, the sheet appears “infinite,” so: 
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 b) At a distance of 100 m from the center, the sheet looks like a point, so: 

.CN1075.6
m)(100

C)1050.7(

4

1

4

1 3

2

9

0

2

0

−
−

×=
×

=≈
πεr

q

πε
E  

 c) There would be no difference if the sheet was a conductor. The charge would 

automatically spread out evenly over both faces, giving it half the charge density on any 

as the insulator 
00 2
::).(
ε
σ

ε
σ

cEσ ==  near one face. Unlike a conductor, the insulator is the 

charge density in some sense. Thus one shouldn’t think of the charge as “spreading over 

each face” for an insulator. Far away, they both look like points with the same charge. 
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22.28: All the s'σ  are absolute values. 
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22.29: a) Gauss’s law says +Q on inner surface, so 0=E  inside metal. 

b) The outside surface of the sphere is grounded, so no excess charge. 

c) Consider a Gaussian sphere with the –Q charge at its center and radius less than 

the inner radius of the metal. This sphere encloses net charge –Q so there is an electric 

field flux through it; there is electric field in the cavity. 

 d) In an electrostatic situation 0=E  inside a conductor. A Gaussian sphere with 

the Q−  charge at its center and radius greater than the outer radius of the metal encloses 

zero net charge (the Q−  charge and the Q+ on the inner surface of the metal) so there is 

no flux through it and 0=E outside the metal. 

 e) No, 0=E  there. Yes, the charge has been shielded by the grounded 

conductor. There is nothing like positive and negative mass (the gravity force is always 

attractive), so this cannot be done for gravity. 
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b) Total flux: 
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22.31: a) 

 
 

 b) Imagine a charge q at the center of a cube of edge length 2L. Then: ./ 0εq=Φ  

Here the square is one 24th of the surface area of the imaginary cube, so it intercepts 1/24 

of the flux. That is, .24 0εq=Φ  

 

 

22.32: a) .CmN750)m0.6)(CN125( 22 ⋅===Φ EA  

 b) Since the field is parallel to the surface, .0=Φ  

 c)  Choose the Gaussian surface to equal the volume’s surface. Then: 750 – 

EA= ,CN577)750C1040.2( 0

8
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1
0 2 =+×=⇒ − εEεq  in the positive x -direction. 

Since 0<q  we must have some net flux flowing in so   AEEA −→  on second face. 

 d) 0<q  but we have E pointing away from face I. This is due to an external field 

that does not affect the flux but affects the value of E. 

 

 



22.33: To find the charge enclosed, we need the flux through the parallelepiped: 
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 b) There must be a net charge (negative) in the parallelepiped since there is a net 

flux flowing into the surface. Also, there must be an external field or all lines would point 

toward the slab. 

 

 

22.34: 

 
 

 The α  particle feels no force where the net electric field is zero. The fields can 

cancel only in regions A and B. 
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The fields cancel 16 cm from the line in regions A and B. 

 

 



22.35: 

 
 

 The electric field 1E
r
 of the sheet of charge is toward the sheet, so the electric 

field 2E
r
 of the sphere must be away from the sheet. This is true above the center of the 

sphere. Let r be the distance above the center of the sphere for the point where the 

electric field is zero. 
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22.36: a) For ,0, =< Ear since no charge is enclosed. 

 For ,, 2
04
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r

q

πε
Ebra =<<  since there is +q inside a radius r. 

 For =<< Ecrb , 0, since now the –q cancels the inner +q. 

 For ,, 2
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q

πε
Ecr =>  since again the total charge enclosed is +q. 

b) 

 
c) Charge on inner shell surface is –q. 

d) Charge on outer shell surface is +q. 

e) 

 
 

 

22.37: a) ,0, =< ERr  since no charge is enclosed. 
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,0, =<< Ebra  since the –Q on the  inner surface of the shell cancels the +Q at the 

center of the sphere. 
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 b) The surface charge density on inner surface: 24πa
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 c) The surface charge density on the outer surface: .24
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22.39: a)(i) ,0, =< Ear  since 0=Q  

 (ii) ,0, =<< Ebra  since .0=Q  

 (iii) ,, 2
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 (iv) ,0, =<< Edrc  since .0=Q  
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 b)(i) small shell inner: 0=Q  

  (ii) small shell outer: qQ 2+=  

  (iii) large shell inner: qQ 2−=  

  (iv) large shell outer: qQ 6+=  

 

 

22.40: a)(i) ,0, =< Ear  since the charge enclosed is zero. 

  (ii) ,0, =<< Ebra  since the charge enclosed is zero. 

  (iii) ,, 2
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q
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Ecrb =<<  since charge enclosed is .2q+  

  (iv) ,0, =<< Edrc  since the net charge enclosed is zero. 

  (v) ,0, => Edr since the net charge enclosed is zero. 

 

 
 

b)(i) small shell inner: 0=Q     

  (ii) small shell outer: qQ 2+=  

  (iii) large shell inner: qQ 2−=  

  (iv) large shell outer: 0=Q  

 

 



22.41: a)(i) ,0, =< Ear  since charge enclosed is zero. 

  (ii) ,0, =<< Ebra  since charge enclosed is zero. 
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  (iv) ,0, =<< Edrc  since charge enclosed is zero. 
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Edr −=>  since charge enclosed is .2q−  

 

 
 

 b)(i) small shell inner: 0=Q  

  (ii) small shell outer: qQ 2+=  

  (iii) large shell inner: qQ 2−=  

  (iv) large shell outer: qQ 2−=  

 

 
22.42: a) We need: 
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 b) ,0,2and0, =>=< ERrERr  since the net charges are zero. 

).(
34

)(
3

4
)4(,2 33

2

0

2

0

33

00

2 Rr
rε

ρ

rπε

Q
ERr

ε

ρπ

ε

Q
πrERrR −+=⇒−+==Φ<<  

Substituting ρ  from (a) .3
0

2
0 287

2

Rπε

Qr

r

Q

πε
E −=  

 

 c) We see a discontinuity in going from the conducting sphere to the insulator 

due to the thin surface charge of the conducting sphere—but we see a smooth transition 

from the uniform insulator to the outside. 

 

 
 

 



22.43: a) The sphere acts as a point charge on an external charge, so: 
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 (b) If the point charge was inside the sphere (where there is no electric field) it 

would feel zero force. 
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22.45: a) ,
λ2

4

1
,

0 r
Ebra

πε
=<<  radially outward, as in 22.48 (b). 

 b) ,, λ2
4
1

0 rπε
Ecr =>  radially outward, since again the charge enclosed is the 

same as in part (a). 

 

 c) 

 
 d) The inner and outer surfaces of the outer cylinder must have the same amount 

of charge on them: .λλand,λλλλ outerinnerinner =−=⇒−= ll  

 

 

22.46: a) (i)  .
2

)2(,
000 rπε

α
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αl

ε

q
πrlEar =⇒==<  

     (ii) ,bra <<  there is no net charge enclosed, so the electric field is zero. 

 

      (iii)  .
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)2(,
000 rπε

α
E

ε

αl

ε

q
πrlEbr =⇒==>  

 
 

 b) (i) Inner charge per unit length is α.−  (ii) Outer charge per length is .2α+  

 

 



22.47: a) (i) ,EπrlEar
rπε

α
ε
αl

ε

q

000 2
)2(, =⇒==<  radially outward. 

     (ii) ,bra << there is not net charge enclosed, so the electric field is zero. 

    (iii) ,br > there is no net charge enclosed, so the electric field is zero. 

 

 
 

b) (i) Inner charge per unit length is .α−  

     (ii) Outer charge per length is ZERO. 
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EπrlERr =⇒==<  radially outward. 

 b) .)2(,λand, λ2
2
λ

2

2

00

2

0

2

0 r
k

rπεrε

ρR
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q EπrlEρπRRr ===⇒===>  

 c) .Rr = the electric field for BOTH  regions is ,
02ε

ρR
E = so they are consistent. 

 d) 

 
 

 

22.49: a) The conductor has the surface charge density on BOTH sides, so it has twice 

the enclosed charge and twice the electric field. 

 b) We have a conductor with surface charge density σ  on both sides. Thus the 

electric field outside the plate is .)2()2( 00 εσEεσAAE =⇒==Φ  To find the field 

inside the conductor use a Gaussian surface that has one face inside the conductor, and 

one outside. 

Then: 
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22.50: a) If the nucleus is a uniform positively charged sphere, it is only at its very 

center where forces on a charge would balance or cancel 
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 So from the simple harmonic motion equation: 
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d) If Rr >  then the electron would still oscillate but not undergo simple 

harmonic motion, because for ,1, 2rFRr ∝>  and is not linear. 

 

 
22.51: The electrons are separated by a distance ,2d  and the amount of the positive 

nucleus’s charge that is within radius d  is all that exerts a force on the electron. So: 
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22.52: ∫ ∫ ∫ ∫∫ −− −=−=−=
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         b) The electric field is radially outward, and has magnitude: 
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22.53: a) At N.94,2 215

219
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  So: .m/s101.0kg1011.9N94 23231 ×=×== −mFa  

  b) .m/s101.44,At 232

(a) ×=== aaRr  

  c) At 
8
1

8
1 ()82(,2 eQRr == because the charge enclosed goes like 

3r ) so with the 

radius decreasing by 2, the acceleration from the change in radius goes up by ,4)2( 2 =  

but the charge decreased by 8, so .m/s101.2 232

)b(8
4 ×== aa  

  d) At .0so,0,0 === FQr  

 

 



22.54: a) The electric field of the slab must be zero by symmetry. There is no preferred 

direction in the y -z plane, so the electric field can only point in the x -direction. But at 

the origin in the x -direction, neither the positive nor negative directions should be 

singled out as special, and so the field must be zero. 

 b) Use a Gaussian surface that has one face of area A on in the y -z plane at 

,0=x  and the other face at a general value .x  Then: 
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000 ε

ρx
E

ε

ρAx

ε

Q
EAdx encl =⇒===Φ≤  

with direction given by .̂
||
i

x
x  

  Note that E  is zero at .0=x  

  Now outside the slab, the enclosed charge is constant with :x  
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22.55: a) Again, E  is zero at 0=x , by symmetry arguments. 
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22.56: a) We could place two charges Q+ on either side of the charge :q+  

 

 
 

  b) In order for the charge to be stable, the electric field in a neighborhood around it 

must always point back to the equilibrium position. 

  c) If q  is moved to infinity and we require there to be an electric field always 

pointing in to the region where q  had been, we could draw a small Gaussian surface 

there. We would find that we need a negative flux into the surface. That is, there has to be 

a negative charge in that region. However, there is none, and so we cannot get such a 

stable equilibrium. 

  d) For a negative charge to be in stable equilibrium, we need the electric field to 

always point away from the charge position. The argument in (c) carries through again, 

this time inferring that a positive charge must be in the space where the negative charge 

was if stable equilibrium is to be attained. 

 



22.57: a) The total charge: ]/[4)/1(4
0

3

0 0

22

0 RdrrdrrdrrRrq

RR R

∫∫ ∫ −=−= πρπ  

 

  .
3

12

4

12

4
]43[4

3

3

0

3
33

0 Q
πR

QπRρπR
RRπρq ===−=⇒  

 

  b) ,Rr ≥  all the charge Q  is enclosed, and: ,/)4( 2
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the same as a point charge. 
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22.58: a) 
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22.59:   a) ∫ ∫ −=−=⋅=Φ .4
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 b) For any closed surface, mass OUTSIDE the surface contributes zero to the flux 

passing through the surface. Thus the formula above holds for any situation where m  is 

the mass enclosed by the Gaussian surface. 

That is: ∫ −=⋅=Φ .encl4πGMdg Ag
rr

 

 



22.60: a) .masspointaforassametheiswhich,44
2

2

r

GM
gπGMπrgg −=⇒−==Φ  

 b) Inside a hollow shell, the .0so,0encl == gM  

 c) Inside a uniform spherical mass: 
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which is linear in .r  

 

 

22.61: a) For a sphere NOT at the coordinate origin: 
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 b) The electric field inside a hole in a charged insulating sphere is: 
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Note that E
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 is uniform. 

 

 
22.62: Using the technique of 22.61, we first find the field of a cylinder off-axis, then the 

electric field in a hole in a cylinder is the difference between two electric fields—that of a 

solid cylinder on-axis, and one off-axis. 
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22.63: a) :0=x  no field contribution from the sphere centered at the origin, and the 

other sphere produces a point-like field: 
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 b) :2  Rx =  the sphere at the origin provides the field of a point charge of charge 

8  Qq =  since only one-eighth of the charge’s volume is included. So: 
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 c) :Rx =  the two electric fields cancel, so .0=E
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 d) :3Rx =  now both spheres contribute fields pointing to the right: 
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22.64: (See Problem 22.63 with QQ −→ for terms associated with right sphere) 

 a) iE ˆ
44

1
)0(

2

0 R

Q

πε
x +==

r
 

 b) iiiE ˆ
18

17

4

1ˆ
9

4

24

1ˆ
)2  3()2  (

)8  (

4

1

2 2

0

22

0

22

0 R

Q

πεR

Q

R

Q

πεR

Q

R

Q

πε

R
x =




 +=







+=







 =
r

 

 c)    iiE ˆ
2

ˆ
4

1
)(

2

0

22

0 Rπε

Q

R

Q

R

Q

πε
Rx =




 +==
r

 

 d) iiiE ˆ
9

8

4

1ˆ
94

1ˆ
)3(4

1
)3(

2

0

22

0

22

0 R

Q

πεR

Q

R

Q

πεR

Q

R

Q

πε
Rx

−
=




 −=







−==

r
 

 

 



22.65: a) The charge enclosed: 
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the first power, and we have simple harmonic motion. 
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 f) If the amplitude of oscillation is greater than ,2/R  the force is no longer linear in 

,r  and is thus no longer simple harmonic. 

 

 



22.66: a) Charge enclosed: 
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 c) The fraction of Q  between :2 RrR ≤≤  
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RrE ==  using either of the electric field expressions above, 

evaluated at .2/Rr =  

 e) The force an electron would feel never is proportional to r−  which is necessary for 

simple harmonic oscillations. It is oscillatory since the force is always attractive, but it 

has the wrong power of r  to be simple  harmonic.  
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       b) At the closest point, the velocity is zero: 
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23.8: From Example 23.1, the initial energy iE can be calculated: 

J.1009.5     

m10

)C1020.3)(C1060.1(
        

)sm1000.3)(kg1011.9(
2

1

19

10

1919

2631

−

−

−−

−

×−=⇒

××−
+

××=+=

i

iii

E

k

UKE

 

When velocity equals zero, all energy is electric potential energy, so: 
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23.9: Since the work done is zero, the sum of the work to bring in the two equal charges 

q must equal the work done in bringing in charge Q. 
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23.10: The work is the potential energy of the combination. 
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Since U is negative, we want do J1031.7 19−×+  to separate the particles 
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It is faster at B; a negative charge gains speed when it moves to higher potential. 



23.14: Taking the origin at the center of the square, the symmetry means that the 

potential is the same at the two corners not occupied by the C00.5 µ+  charges  (The 

work done in moving to either corner from infinity is the same). But this also means that 

no net work is done is moving from one corner to the other. 

 

 

23.15: E
r
points from high potential to low potential, so .and ACAB VVVV <>  

       The force on a positive test charge is east, so no work is done on it by the electric 

force when it moves due south (the force and displacement are perpendicular); .AD VV =  

 
 

23.16: a) J.1050.1 6−×=∆==∆−= KqEdUW  

     b) The initial point was at a higher potential than the latter since any positive charge, 

when free to move, will move from greater to lesser potential. 
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23.17: a) Work done is zero since the motion is along an equipotential, perpendicular to 

the electric field. 
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23.18: Initial energy equals final energy: 
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       c) J.108.25V)33(C)1050.2( 89 −− ×−=−×=∆= VqW  

The negative sign indicates that the work is done on the charge. So the work done by the 

field is J.1025.8 8−×  
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c) The potential along the x-axis is always zero, so a graph would be flat. 

d) If the two charges are interchanged, then the results of (b) and (c) still hold. 

The potential is zero 
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      d) If the charges are interchanged, then the potential is of the opposite sign. 
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       c) The electric field is directed away from q since it is a positive charge. 

 

 

23.29:  a) Point b has a higher potential since it is “upstream” from where the positive 

charge moves. 
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23.30:(a) ,02 >+= QQ VVV  so V is zero nowhere except for infinitely far from the 
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 Note that E and V are not zero at the same places. 
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      The electron gains kinetic energy when it moves to higher potential. 
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The electron loses kinetic energy when it moves to lower potential 
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 c) Since the sphere is metal, its interior is an equipotential, and so the potential 

inside is 131.3 V. 

 

 

23.33: a) The electron will exhibit simple harmonic motion for ,ax <<  but will 

otherwise oscillate between .cm0.30±  

      b) From Example 23.11, 
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23.34: Energy is conserved: 
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 b) The higher potential is at the positive sheet. 
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       c)   The electric field stays the same if the separation of the plates doubles, while the 

potential between the plates doubles. 

 

 

23.39:  a) The electric field outside the shell is the same as for a point charge at the center 

of the shell, so the potential outside the shell is the same as for a point charge: 
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      c) No, the amount of charge on the sphere is very small. 

 

 



23.40: For points outside this spherical charge distribution the field is the same as if all 

the charge were concentrated at the center. 
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Since the field is directed inward, the charge must be negative. The potential of a point 
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at the surface of the sphere. Since the charge all resides on the surface of a conductor, the 

field inside the sphere due to this symmetrical distribution is zero. No work is therefore 

done in moving a test charge from just inside the surface to the center, and the potential at 

the center must also be .V760−  
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23.43: a) There is no dependence of the potential on ,or yx  and so it has no 

components in those directions. However, there is z  dependence: 
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     (b) Infinite parallel plates of opposite charge could create this electric field, where the 

surface charge is .0Cεσ ±=  

 

 



23.44: a) 

 (i) .
11

: 







−=−=<

baba

a
rr

kq
r

kq

r

kq
Vrr  

 (ii) .
11

  : 







−=−=<<

bb

ba
rr

kq
r

kq

r

kq
Vrrr  

(iii) ,0: => Vrr b  since outside a sphere the potential is the same as for point 

charge. Therefore we have the identical potential to two oppositely charged point charges 

at the same location. These potentials cancel. 
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       d) From Equation (24.23): ,0=E   since V is zero outside the spheres. 

      e) If the outer charge is different, then outside the outer sphere the potential is no 

longer zero but is .
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c) The equipotentials are closest when the electric field is largest. 
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      b) The potential was evaluated at y and z equal to zero, and thus shows no 

dependence on them. However, the electric field depends upon the derivative of the 

potential and the potential could still have a functional dependence on the variables y and 

z, and hence yE  and zE may be non-zero. 

 

 



23.47: 

 

 

 

      a) Equipotentials and electric field lines of two large parallel plates are shown above. 

      b)  The electric field lines and the equipotential lines are mutually perpendicular. 
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      (b) Maximum speed occurs at “infinity”. The center charge does not move since the 

forces on it balance. Energy conservation gives .fi KU =  
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23.52: From Problem 22.51, the electric field of a sphere with radius R and q distributed 

uniformly over its volume is  for  
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Set eq 2+=  to get rV for the sphere. The work done by the attractive force of the sphere 

when one electron is removed from isto ∞= dr  
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The total work done by the attractive force of the sphere when both electrons are 

removed is twice this, .2 sphereW  The work done by the repulsive force of the two electrons 

is 
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We can check this result in the special case of d = R, when the electrons initially sit on 

the surface of the sphere. The potential due to the sphere is the same as for a point charge 

e2+  at the center of the sphere. 
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The work done by the electric forces when the electrons are removed is Rπεe 0

2 87− and 

the energy required to remove them is Rπεe 0

2 87 . Setting d =R in our general expression 

yields this same result. 
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      b) The fact that the electric potential energy is less than zero means that it is 

energetically favourable for the crystal ions to be together. 
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       c) The potential energy is the same for the negative ions—the equations are identical 

if we examine (a). 
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     e) The real energy )J1080.0( 18−×− is about 70% of that calculated above. 

 

 

23.55: a) .J1061.8
m100.535

)C1060.1(22 18

10

2192
−

−

−

×−=
×
×−

=
−

=
k

r

ke
Ue  

     b) If all the kinetic energy goes into potential energy: 
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(Note that we must be careful to keep all digits along the way.) .m1087.2 11−×=⇒ x  
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           d) The potential difference between the two cylinders is identical to that in part 

(b) even if the outer cylinder has no charge. 

 

 

23.58: Using the results of Problem 23.57, we can calculate the potential difference: 
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23.61:   a) From Problem 23.57, 
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23.62: Recall from Example 23.12 for a line of charge of length a : 
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     a) For a square with two sets of oppositely charged sides, the potentials cancel and 

0=V . 

     b) If all sides have the same charge we have: 
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23.64: a) From Example 23.12: 
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That is, the finite rod acts like a point charge when you are a long way from it. 

        b) From Example 23.12: 
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=≡ which is the only natural length in the problem. 
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        b) W = .J104.31V)(718C)106.00( 69 −− ×−=×+−=∆− Vq  

Note that the work done by the field is negative, since the charge is moved AGAINST the 
electric field. 
 

23.67: From Example 21.10, we have: 
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23.69: a) ∫ =⋅+−−=
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23.70: From Example 22.9, we have: 
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23.71: a) Problem 23.70 shows that 
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b) If VQ ,0>  is higher at the center. If  VQ ,0<  is higher at the surface. 

 

 

23.72: (a) Points cba and,,  are all at the same potential because 0=E  inside the 

spherical shell of charge on the outer surface. So .0=∆=∆=∆ acbcab VVV  
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      (b) They are all at the same potential 

     (c) Only ∞∆ cV  would change; it would be V.1025.2 6×−  

 

 

23.73: a) The electrical potential energy for a spherical shell with uniform surface 

charge density and a point charge q  outside the shell is the same as if the shell is 

replaced by a point charge at its center. Since ,drdUFr −=  this means the force the 

shell exerts on the point charge is the same as if the shell were replaced by a point charge 

at its center. But by Newton’s 3rd law, the force q  exerts on the shell is the same as if the 

shell were a point charge. But q  can be replaced by a spherical shell with uniform 

surface charge and the force is the same, so the force between the shells is the same as if 

they were both replaced by point charges at their centers. And since the force is the same 

as for point charges, the electrical potential energy for the pair of spheres is the same as 

for a pair of point charges. 

      b) The potential for solid insulating spheres with uniform charge density is the same 

outside of the sphere as for a spherical shell, so the same result holds. 

     c) The result doesn’t hold for conducting spheres or shells because when two charged 

conductors are brought close together, the forces between them causes the charges to 

redistribute and the charges are no longer distributed uniformly over the surfaces. 

 

 



23.74: Maximum speed occurs at “infinity” Energy conservation gives 
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23.75: Using the electric field from Problem 22.37, the potential difference between the 

conducting sphere and insulating shell is: 
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:0  since it is inside a metal sphere, and thus at the 

same potential as its surface. 

 

 

23.77: Using the electric field from Problem 22.54, the potential difference between the 

two faces of the uniformly charged slab is: 
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23.80: Set the alpha particle’s kinetic energy equal to its potential energy: 
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23.82: a) From Problem 22.57 we have the electric field: 
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which is the potential of a point charge. 
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       b) After electrostatic equilibrium is reached, with charge 1Q′  now on the original 
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       c) The new potential is the same at each sphere’s surface: 
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      d) The new electric field is not the same at each sphere’s surface: 
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      b) A charge is moved in along the z -axis. So the work done is given by: 
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      b) For a helium-helium collision, the charges and masses change from (a): 
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 d) These calculations were based on the particles’ average speed. The distribution 

of speeds ensures that there are always a certain percentage with a speed greater than the 

average speed, and these particles can undergo the necessary reactions in the sun’s core. 

 

 



23.86: a) The two daughter nuclei have half the volume of the original uranium nucleus, 

so their radii are smaller by a factor of the cube root of 2: 
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Each daughter has half of the potential energy turn into its kinetic energy when far from 

each other, so: 
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 d) We could call an atomic bomb an “electric” bomb since the electric potential 

energy provides the kinetic energy of the particles. 

 

 

23.87: Angular momentum and energy must be conserved, so: 
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       c) ,0)(: =≥ rρar  so the total charge enclosed will be given by: 
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Therefore, by Gauss’s Law, the electric field must equal zero for any position .ar ≥  

 

 

23.89: a) .
3

4

3

4 33

ab

eabg
V

gdρrπ
qFqEdqVρg

πr
mgF =⇒=====   

      b) 
ρg

ηv
rFπηrvρg

πr
mgF t

vtg
2

9
6

3

4 3

=⇒====  

  .
2

18
2

9

3

4
33

3

ρg

vη

V

d
π

ρg

ηv

V

ρgdπ
q t

ab

t

ab

=







=⇒  

       c) .3C1080.4
)sm80.9)(mkg824(2

s)39.3m10()mNs1081.1(

V9.16

m10
18 19

23

333253

eπq =×=
×

= −
−−−

 

 m1007.5
)sm80.9)(mkg824(2

s)39.3m10)(mNs1081.1(9 7

23

325
−

−−

×=
×

=r  

 

 



23.90: For an infinitesimal slice of a finite cylinder, we have the potential: 
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2

2222 Rx

kQ
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L

L

kQ
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+
=

+
≈⇒  which is the same as for a ring. 

      c)   
( )

.
4)2(4)2(
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2222
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x

V
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23.91: a) 
 

sm700
kg103.0kg100.6

s)mkg)(1300103()sm400)(kg106(
55

55

21

2211 =
×+×

×+×
=

+
+

= −−

−−

mm

vmvm
vcm  

     b) .)(
2

1

2

1

2

1 2

21
212

22

2

11 cmrel vmm
r

qkq
vmvmE +−++=  

     After expanding the center of mass velocity and collecting like terms: 

 .)(
2

1
]2[

2

1 212

21
21

21

2

2

2

1

21

21

r

qkq
vvµ

r

qkq
vvvv

mm

mm
Erel +−=+−+

+
=⇒  

      c) J.9.1
m0.0090

C)10 5.0C)(100.2(
s)mkg)(900100.2(

2

1 66
25 −=

×−×
+×=

−−
− k

Erel  

d) Since the energy is less than zero, the system is “bound.” 

e) The maximum separation is when the velocity is zero: 

  .m047.0
J9.1

)C100.5)(C100.2(
J9.1

66

21 =
−

×−×
=⇒=−

−−k
r

r

qkq
 

f) Now using particlesthesoJ.6.9:findwe,sm1800andsm400 21 +=== relEvv  

: is velocity relative final  theand escape,do   

 s.m980
kg100.2

)J6.9(22
521 =

×
==− −µ

E
vv rel  

 

 
 

 
 



Capítulo 24 



24.1: .C1082.1)F28.7)(V0.25(
4−×=== µCVQ  

 

24.2: a) pF.29.3
m00328.0

m00122.0 2

00 === ε
d

A
εC  

b) .kV2.13
F1029.3

C1035.4
12

8

=
×

×
==

−

−

C

Q
V  

c) .mV1002.4
m00328.0

V102.13 6
3

×=
×

==
d

V
E  

 

24.3: a) .V604
F1045.2

C10148.0
10

6

=
×

×
==

−

−

C

Q
V  

b) .m 0091.0
m) 103280F)( 1045.2( 2

0

310

0

=
××

==
−−

ε

.

ε

Cd
A  

c) .mV1084.1
m10328.0

V604 6

3
×=

×
==

−d

V
E  

d) .C/m1063.1)mV1084.1( 256

00

0

−×=×==⇒= εEεσ
ε

σ
E  

 

24.4: d
ε

σ
EdV

0

==∆  

 
2212

212

NmC1085.8

)m00180.0)(mC1060.5(
−

−

×

×
=  

        =1.14 mV 

 

 

24.5: a) µCCVQ 120==  

b) dAεC 0=  

C602and2means2 µQQCCdd =→→→  

c) C4804and,4,4means2 µQQCCAArr =→→→→  

 

 



24.6: (a) 12.0 V since the plates remain charged. 

(b) (i) 
C

QV =  

Q does not change since the plates are disconnected from the battery. 

    
d

ε
C

A⋅
=  

If d is doubled, V0.242so,
2
1 =→→ VVCC  

(ii) CCAArrπrA 4and,4then,2ifso,2 →→→=  which means that 

   V00.3
4

1
=→ VV  

24.7: Estimate cm0.1=r  

  mm8.2
F1000.1

)m010.0(
so

12

2

0

2

00 =
×

=== −

πε

C

πr
d

d

Aε
C

ε
 

The separation between the pennies is nearly a factor of 10 smaller than the diameter of a 

penny, so it is a reasonable approximation to treat them as infinite sheets. 

 

 

24.8: (a) EdV =∆  

cm 00.1m 10

)CN 10(V 100

2

4

==

=
−d

d
 

                                
d

Rε

d

Aε
C

2

00 π
==  

  
00 4

4

πε

Cd

πε

Cd
R ==  

  )
C

Nm
109)(m10)(F1000.5(4

2

2
9212 ××= −−R  

  cm24.4m1024.4 2 =×= −R  

 (b) pC500)V100)(pF5( === CVQ  

 

 

24.9: a) 
)(ln

2 0

ab rr

πε

L

C
=  

 F1035.4
)50.000.5(ln

2)m180.0( 120 −×==
πε

C  

b) V30.2)F1035.4/()C100.10(/ 1212 =××== −−CQV  

 

 



24.10: a) .84.577.1
mF105.31

22
)(ln

)(ln

2
12

000 =⇒=
×

==⇒= −
a

b
ab

ab r

rπε

LC

πε
rr

rr

πε

L

C
 

 b) .mC1019.8)mF105.31)(V60.2( 1112 −− ×=×==
L

C
V

L

Q
 

 

 

24.11: a) F/m.1056.6
)mm5.1/mm5.3(ln

2

)(ln

2 1100 −×===
πε

rr

πε
LC

ab

 

 b) The charge on each conductor is equal but opposite. Since the inner conductor 

is at a higher potential it is positively charged, and the magnitude is: 

 C.1043.6
) mm 1.5mm5.3(ln

)V35.0)(m8.2(2

)(ln

2 1100 −×====
ε

rr

LVε
CVQ

ab

ππ
 

 

 

24.12: a) For two concentric spherical shells, the capacitance is: 

  
a

a
bbaab

ab

ba

rkC

kCr
rrrkCrkCr

rr

rr

k
C

−
=⇒=−⇒









−
=

1
 

  .m175.0
m150.0)F10116(

)m150.0)(F10116(
12

12

=
−×

×
=⇒ −

−

k

k
rb  

b) .C1055.2)V220)(F10116(and,V220 812 −− ×=×=== CVQV  

 

 

24.13: a) .F1094.8
m125.0m148.0

)m125.0)(m148.0(11 11−×=







−

=








−
=

krr

rr

k
C

ab

ab  

b) The electric field at a distance of 12.6 cm: 

  .N/C6082
)m126.0(

)V120)(F1094.8(
2

11

22
=

×
===

−k

r

kCV

r

kQ
E  

c) The electric field at a distance of 14.7 cm: 

  N/C.4468
)m147.0(

)V120)(F1094.8(
2

11

22
=

×
===

−k

r

kCV

r

kQ
E  

d) For a spherical capacitor, the electric field is not constant between the 

surfaces. 

 

 



24.14: a) 
)F100.6(

1

)F10)0.50.3((

1111
66

321eq

−− ×
+

×+
=+

+
=

CCCC
 

  .F1042.3
6

eq

−×=⇒ C  

The magnitude of the charge for capacitors in series is equal, while the charge is 

distributed for capacitors in parallel. Therefore, 

 .C1021.8)F1042.3)(V0.24( 56

eq213

−− ×=×==+= VCQQQ  

Since 1C  and 2C  are at the same potential, ,
3

5
1

1

2
2

2

2

1

1 QQ
C

C
Q

C

Q

C

Q
==⇒=  

 .C1013.5and,C1008.3C1021.8 5

2

5

1

5

13
8

3

−−− ×=×=⇒×== QQQQ  

b) ==××=== −−
3

65

1112 And.V3.10)F1000.3/()C1008.3( VCQVV  

.V7.13V3.10V0.24 =−  

c) The potential difference between a and d: .V3.1021 === VVVad  

 

 

24.15: a) 
)F0.4(

1

)F0.4F00.2(

11

)(

11

43
11

eq
21

µµµCCC
CC

+
+

=+
++

=  

   .F40.2eq µC =⇒  

 Then, C1072.6)V0.28)(F1040.2( 56

eqtotal4312

−− ×=×====+ VCQQQQ  and 

.C1048.4and,C1024.2
3

C1072.6

3
2 5

3

5
5

total
12312

−−
−

×=×=
×

==⇒= Q
Q

QQQ  But 

also, C.1024.2 5

1221

−×=== QQQ  

 b) 2

65

111 V60.5)F1000.4()C1024.2( VCQV ==××== −−  

      .V2.11)F1000.4()C1048.4( 65

333 =××== −−CQV  

   V.8.16)F1000.4()C1072.6( 65

444 =××== −−CQV  

 c) .V2.11V8.16V0.284 =−=−= VVV abad  

 

 
24.16: a) 

C1075.9)F1088.1)(V0.52(

F1088.1F1033.5

)F100.5(

1

)F100.3(

1111

56

eq

6

eq

15

66

21eq

−−

−−

−−

×=×==⇒

×=⇒×=

×
+

×
=+=

VCQ

C

CCC

 

 

 

       b)   .V5.32F100.3C1075.9/ 65

11 =××== −−CQV  

 .V5.19F100.5C1075.9/ 65

22 =××== −−CQV  

 

 



24.17: a) .C1056.1)F100.3)(V0.52( 46

11

−− ×=×==VCQ  

  C.106.2)F100.5)(V0.52( 46

22

−− ×=×==VCQ  

 b) For parallel capacitors, the voltage over each is the same, and equals the 

voltage source: 52.0 V. 

 

 

24.18: ( ) ( ) .
21

0

0

2

0

1

21

1111
eq dd

Aε

Aε

d

Aε

d

CC
C +

−− =+=+=  So the combined capacitance for two 

capacitors in series is the same as that for a capacitor of area A and separation )( 21 dd + . 

 

 

24.19: .
)(

21eq
2102010

d

AAε

d

Aε

d

Aε
CCC

+=+=+=  So the combined capacitance for two 

capacitors in parallel is that of a single capacitor of their combined area )( 21 AA +  and 

common plate separation d. 

 

 

24.20: a) and b) The equivalent resistance of the combination is 6.0 ,Fµ  therefore the 

total charge on the network is: C.1016.2)V36)(F0.6( 4

eqeq

−×== µVCQ  This is also the 

charge on the F0.9 µ  capacitor because it is connected in series with the point b. So: 

  .V24
F100.9

C1016.2
6

4

9

9

9 =
×

×
==

−

−

C

Q
V  

Then .V12V24V369612113 =−=−=+== VVVVVV  

 C.106.3)V12)(F0.3( 5

333

−×===⇒ µVCQ  

 .C1032.1)V12)(F11( 4

111111

−×===⇒ µVCQ  

 113126 QQQQQ −−==⇒  

            C.1032.1C106.3C1016.2 454 −−− ×−×−×=  

            C.108.4 5−×=  

So now the final voltages can be calculated: 

 

V.4
F1012

C108.4

V.8
F100.6

C108.4
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5

12

12
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6

5

6

6
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=
×
×

==

=
×
×

==

−

−

−

−

C

Q
V

C

Q
V

 

 c) Since the 3 F6andF11,F µµµ capacitors are connected in parallel and are in 

series with the F9 µ  capacitor, their charges must add up to that of the F9 µ  capacitor. 

Similarly, the charge on the F12andF11,F3 µµµ  capacitors must add up to the same as 

that of the F9 µ  capacitor, which is the same as the whole network. In short, charge is 

conserved for the whole system. It gets redistributed for capacitors in parallel and it is 

equal for capacitors in series. 

 

 



24.21: Capacitances in parallel simply add, so: 

F.57F72F)15(
F0.9

1

F)0.411(

1

F0.8

11

eq

µxµµx
µµxµC

=⇒=+⇒







+

++
==  

 

 

24.22: a) 21 and CC  are in parallel and so have the same potential across them: 

  V33.13
F1000.3

C100.40
6

6

2

2 =
×
×

== −

−

C

Q
V  

Thus C.100.80)F1000.3(V)33.13( 66

11

−− ×=×==VCQ  Since 3Q  is in series with the 

parallel combination of 21 and CC , its charge must be equal to their combined charge: 

C100.120C100.80C100.40 666 −−− ×=×+×   b) The total capacitance is found from: 

 
F1000.5

1

F1000.9

1111
66

3||tot

−− ×
+

×
=+=

CCC
 

   F21.3tot µC =  

and 

  V4.37
F1021.3

C100.120
6

6

tot

tot =
×
×

== −

−

C

Q
Vab  

 

 

24.23: V50)F00.3()C150(111 === µµCQV  

 21 and CC  are in parallel, so V502 =V  

 V70V120 13 =−= VV  

 

 

24.24: a) V.2772)F10920()C55.2(/ 12 =×== −µCQV  

 b) Since the charge is kept constant while the separation doubles, that means that 

the capacitance halves and the voltage doubles to 5544 V. 

 c) .J1053.3)V2772)(F 10920(
3212

2
12

2
1 −− ×=×== CVU  Now if the separation 

is doubled, the capacitance halves, and the energy stored doubles. So the amount of work 

done to move the plates equals the difference in energy stored in the capacitor, which is 

.J1053.3 3−×  

 

 

24.25: m.V1000.8)m005.0()V400( 4×=== dVE  

And .mJ0283.0)mV1000.8( 324

02
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02
1 =×== εEεu  

 

 



24.26: a) .F1000.9)V200(C)0180.0( 11−×=== µVQC  

 b) .m0152.0
)m0015.0)(F1000.9( 2
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d

Aε
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 c) V.4500)m0015.0)(mV1000.3(
6

maxmaxmaxmax =×==⇒= dEVdVE  

 d) J.1080.1
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)C1080.1(
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24.27: J.6.19)V295)(F1050.4(
24
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12

2
1 =×== −
CVU  

 

 

24.28: a) .0CVQ =  

 b) They must have equal potential difference, and their combined charge must 

add up to the original charge. Therefore: 
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 c) 
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 d) The original U was .
2

06
12

02
1 CVUCVU −=∆⇒=  

 e) Thermal energy of capacitor, wires, etc., and electromagnetic radiation. 

 

 

24.29: a) .
22 0

22

0
Aε

xQ

C

Q
U ==  

 b) Increase the separation by ).1(02

)(

0

2

xdxUUdx
Aε

Qdxx +==⇒ +
 The change is 

then dx
Aε

Q

0

2

2
. 

 c) The work done in increasing the separation is given by: 

  .
22 0

2

0

2

0
Aε

Q
FFdx

Aε

dxQ
UUdW =⇒==−=  

 d) The reason for the difference is that E is the field due to both plates. The force 

is QE if E is the field due to one plate is Q is the charge on the other plate. 

 



24.30: a) If the separation distance is halved while the charge is kept fixed, then the 

capacitance increases and the stored energy, which was 8.38 J, decreases since 

.22 CQU =  Therefore the new energy is 4.19 J. 

 b) If the voltage is kept fixed while the separation is decreased by one half, then 

the doubling of the capacitance leads to a doubling of the stored energy to 16.76 J, using 

,22CVU =  when V is held constant throughout. 

 

 

24.31: a) CQU 22=  

 C1000.5)F1000.5)(J0.25(22 49 −− ×=×== UCQ  

 The number of electrons � that must be removed from one plate and added to the 

other is 
15194 1012.3)C10602.1/()C1000.5( ×=××== −−eQ� electrons. 

 b) To double .2offactorabydecreaseconstant,keepingwhile CQU  

 ;/0 dAεC =  halve the plate area or double the plate separation. 

 

 

24.32: farad10417.3
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C1020.8 12
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 dAKεC 0Since = for a parallel plate capacitor 
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d

 

 The energy density is thus 
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24.33: a) .C1060.1
V00.4
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 b) )2exp()2exp(
)(ln

2
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0 QLVπεCLπε
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24.34: a) For a spherical capacitor: 
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b) .J1038.6
2

)V7.38)(F1053.8(
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1 8
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== CVU   

 

24.35: a) 
4

21122

0

2

2
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2

2
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0
)m126.0(

)F1094.8()V120(

2222

1
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
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kqε
Eεu  

.mJ1064.1 34−×=⇒ u   

 b) The same calculation for .mJ1083.8cm7.14 35−×=⇒= ur  

 c) No, the electric energy density is NOT constant within the spheres. 

 

 

24.36: a) .mJ1011.1
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q
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εEεu  

 b) If the charge was –8.00 nC, the electric field energy would remain the same 

since U only depends on the square of E. 

 

 

24.37: Let the applied voltage be V. Let each capacitor have capacitance 2

2
1 . CVUC =  

for a single capacitor with voltage V. 

 a) series 

 Voltage across each capacitor is .2V  The total energy stored is 

 [ ] 2

4
12

s 2
2

1
2 CVVCU =







=  

 parallel 
 Voltage across each capacitor is V. The total energy stored is 
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[ ]( ) spps
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QQCVCVQCVVCQ

VCVQUU
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 c) VdVE voltagewithcapacitorafor=  

     spps 2;;2 EEdVEdVE ===  

 

 



24.38: a) dAKεC 0= gives us the area of the plates: 

 24

2212

312

0

m10475.8
)mN/C1085.8)(00.1(
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      We also have electrictheis).( so , 00 dVdVAKQVQdAKεC ε=== field 

between the plates, which is not to exceed ThusC.N1000.3 4×  

C1025.2

C)N1000.3)(m10475.8)(mNC1085.8)(00.1(
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4242212

−
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×=

××⋅×=Q
 

 b) Again, ).(70.2)( 00 dVAεdVAKεQ ==  If we continue to think of dV as 

the electric field, only K has changed from part (a); thus Q in this case is 

.C1008.6C)1025.2)(70.2( 1010 −− ×=×  

24.39: a) .mC1020.6)mV10)50.220.3(( 275

0

−×=×−= εσi  The field induced in the 

dielectric creates the bound charges on its surface. 
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24.40: a) ==⇒×=×== 00
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0 mV1032.4)mV1020.1)(60.3( EεσKEE  

.mC1082.3 25−×  
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
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 c) AdEKεuAdCVU 2
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1 ===  

                 .J1003.1)m105.2)(m0018.0()mV1020.1()60.3( 52426

02
1 −− ×=××=⇒ εU  

 

 

 

24.41: .m0135.0
)mV1060.1()60.3(

)V5500)(F1025.1( 2

7

0

9

0

00 =
×

×
==⇒==

−

εEKε

CV
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V

AEKε

d

AKε
C  

 
 

24.42: Placing a dielectric between the plates just results in the replacement of 0for εε in 

the derivation of Equation (24.20). One can follow exactly the procedure as shown for 
Equation (24.11). 

 

 



24.43: a) .NmC103.2)6.2(
2211

00

−×=== εKεε  

      b) .V100.4)m100.2)(mV100.2( 437

maxmax ×=××== −dEV  

      c) .mC1046.0)mV100.2)(NmC103.2( 2372211

0

−− ×=××==⇒= εEσ
Kε

σ
E  

            .mC108.2)6.211)(mC1046.0(
1

1 And 2423 −− ×=−×=






 −=
K

σσ i  

 

 

24.44: a) =×=−=−=−=∆ − )V12)(F105.2)(1.2()1()1( 7

0000 VCKQKQQQ  

C.103.6 6−×  

 b) ( ) .C103.6)1.311)(C103.9(1
661 −− ×=−×=−=

Ki QQ  

 c) The addition of the mylar doesn’t affect the electric field since the induced 

charge cancels the additional charge drawn to the plates. 

 

 

24.45: a) .V1.10
)F1060.3(

J)1085.1(22
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0
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×
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==⇒= −

−

C

U
VVCU  

 b) .27.2
)V1.10)(F1060.3(

)J1085.11032.2(2
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1
27
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24.46: a) The capacitance changes by a factor of K when the dielectric is inserted. Since 

V is unchanged (The battery is still connected), 

 80.1
pC0.25

pC0.45

before

after

before

after ==== K
Q

Q

C

C
 

 b) The area of the plates is ,m10827.2)m0300.0( 2322 −×== ππr  and the 

separation between them is thus 

 

m10002.2

farad105.12

)m10827.2)(mNC1085.8)(00.1(

3
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232212

0

−

−
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×
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 Before the dielectric is inserted, 

 

V000.2

)m10827.2)(mNC1085.8)(00.1(

)m1000.2)(C100.25(
232212

312

0

0
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×⋅×
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AKε

Qd
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V

Q

d

AKε
C

 

The battery remains connected, so the potential difference is unchanged after the 

dielectric is inserted. 

 c) Before the dielectric is inserted, 

 

CN999

)m10827.2)(00.1)(mNC1085.8(

C100.25
232212

12

0

=

×⋅×
×

== −−

−

KAε

Q
E

 

Again, since the voltage is unchanged after the dielectric is inserted, the electric field is 

also unchanged. 

 

 

 

24.47: a) before: V00.3)F1000.3()C1000.9( 66

000 =××== −−CQV  

 after: 00 ;F0.15 QQKCC ===  

 KVCQV offactorabydecreasesV;600.0==  

 b) the,dVE = same at all points between the plates (as long as far from the 

edges of the plates) 

 before: mV1500)m1000.2()V00.3( 3 =×= −E  

 after: mV300m)1000.2()V600.0( 3 =×= −E  

 

 



24.48: a) .
4

4
2

0

2

0 πεd

q
E

ε

q
πdKE

ε

Q
K

free =⇒=⇒=⋅∫ AE
rr

 

  b) 
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        ./ Kqqqq btotal =+=⇒  

  c) The total bound change is ( ).11
b −=

K
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24.49: a) Equation (25.22): ∫ ==⇒=⇒=⋅ .
000 εA

Q

AKε

Q

ε

Q

ε

Q
EKEAdK free

AE

rr
 

b) .
0 εA

Qd

AKε

Qd
EdV ===  

c) .0
0 KC
d
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d

εA

V

Q
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24.50: a) .F108.4
m107.4

)m16.0( 11

3

2

00 −
− ×=

×
==

ε

d

Aε
C  

   b) .C1058.0)V12()F108.4( 911 −− ×=×== CVQ  

    c) E= dV =(12 V)/(4.7 )m10 3−× =2553 mV . 

   d) .J1046.3)V12)(F108.4(
9211

2
12

2
1 −− ×=×== CVU  

   e) If the battery is disconnected, so the charge remains constant, and the plates are 

pulled further apart to 0.0094 m, then the calculations above can be carried out 

just as before, and we find: 

 

 a) F1041.2 11−×=C   b) .C1058.0 9−×=Q  

c) mV 2553=E        d) .J1091.6
)F1041.2(2

)C1058.0(

2

9

11

292
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−

−

×=
×
×

==
C

Q
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24.51: If the plates are pulled out as in Problem 24.50 the battery is connected, ensuring 

that the voltage remains constant. This time we find: 

 a) F104.2 11−×=C  b) C109.2 10−×=Q  c) 
m

V
103.1

0094.0

V12 3×===
d

V
E  

  

d) .J1073.1
2
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9
2112

−
−
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24.52: a) System acts like two capacitors in series so ( ) 111
eq

21

−+=
CC
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        ( ) .
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0
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dQQ
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d
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d

Lε
CC

d

Lε
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 b) After rearranging, the E fields should be calculated. Use superposition recalling  

Aε

Q
E

02
= for a single plate (not 

Aε

Q

0
 since charge Q is only on one face). 

 between 1 and 3: 
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 between 3 and 2: 
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This is the work required to rearrange the plates. 

 

 
24.53: a) The power output is 600 W, and 95% of the original energy is converted. 

.J421J400)s1048.1()W1070.2(
95.0

J400

0

35 ==∴=××==⇒ −
EPtE  

b) F054.0
)V125(

)J421(22

2

1
22

2 ===⇒=
V

U
CCVU  

 

24.54: F1031.5
m1000.7

)m1020.4( 13

4

0

25

0
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−
−

−
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×
==

ε

d

Aε
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  .F1081.7pF25.0
13

0

−×=+=⇒ CC  

 But .m1076.4
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13

0
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00 −
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×
==′⇒
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=

ε

C

Aε
d

d

Aε
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Therefore the key must be depressed by a distance of: 

  .mm224.0m1076.4m1000.7 44 =×−× −−  

 

 



24.55: a) d .
2

)1ln(

π2

))(ln(

2

)ln(

2
: 00000
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Lεπr

rd

Lε

rrd
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aaaab

a =≈
+

=
+

==<<  

b) At the scale of part (a) the cylinders appear to be flat, and so the capacitance 

should appear like that of flat plates. 

 

 

24.56: Originally: ×==×=== − F)0.4(;C102.52V)(28F)0.9( 222
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111 µVCQµVCQ   

eq

4
and,C101.12V)(28 C

−×= isstoredenergyoriginaltheSo.F0.1321 µCC =+=  

:is storedenergy  new  theSoF.0.13same,thestill
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 ,capacitorstheflipandDisconnectJ.1010.5V)(28F)100.13(

eq

4

12

326

2
12

eq2
1

µC

QQQ

VCU

=

×=−=

×=×==
−

−−

J.1035.4J1010.5J107.45

J1054.7
F)100.13(2

)C104.1(

2

334

4

6

24

eq

2

−−−

−
−

−

×−=×−×=∆⇒

×=
×

×
==

U

C

Q
U

 

 

24.57: a) ====+= )V660()F00.10(andF,00.10F00.600.4 eqeq µVCQµµµFC total

6.6 .C10 3−× The voltage over each is 660 V since they are in parallel. So: 

 

C.1096.3)V660()F00.6(

C.1064.2)V660()F00.4(

3

222

3

111

−

−

×===

×===

µVCQ

µVCQ
 

 

 b) ,F00.10stilland,C1032.1C1064.2C1096.3 eq

333 µ=×=×−×= −−−
CQtotal  

so the voltage is V = Q/C = ,V132)F00.10()C1032.1( 3 =× − µ and the new charges: 

 

C.1092.7)V132)(F00.6(

.C1028.5)V132)(F00.4(

4

222

4

111

−

−

×===

×===

µVCQ
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24.58: a)  

 

 
 

.
22eq CC CC =+=  So the total capacitance is the same as each individual capacitor, and 

the voltage is spilt over each so that 480=V  V. Another solution is two capacitors in 

parallel that are in series with two others in parallel. 

 

b) If one capacitor is a moderately good conductor, then it can be treated as a 

“short” and thus removed from the circuit, and one capacitor will have greater than 600 

V over it. 

 

 

24.59:   a) ( ) and2
1111
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so 2eq2
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         b) 51

4 C1054.5)V220)(F52.2( QQµCVQ ==×=== −  

                 .V66)F104.8(/)C1054.5( 64

51 =××==⇒ −−VV  
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24.60: a) With the switch open: ( ) ( )( ) F00.4
1

F6
1

F3
11

F6
1

F3
1

eq µC
µµµµ

=+++= −−
 

C108.4V)(210F)00.4( 4

eq

−×===⇒ µVCQtotal . By symmetry, each 

capacitor carries 4.20 C.10 4−×   The voltages are then just calculated via V=Q/C. 

So: V.70V70/andV,140/ 63 =−=⇒==== acadcdacad VVVCQVCQV  

 b) When the switch is closed, the points c and d must be at the same potential, so 

the equivalent capacitance is: 

F.4.5
F6)(3

1

F6)(3

1
1

eq µ
µµ

C =
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




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=
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,C109.5V)(210F)50.4( 4

eq

−×===⇒ µVCQtotal and each capacitor has the same 

potential difference of 105 V (again, by symmetry) 

c) The only way for the sum of the positive charge on one plate of 2C and the 

negative charge on one plate of 1C to change is for charge to flow through the switch. 

That is, the quantity of charge that flows through the switch is equal to the charge in 

.012 =− QQ  With the switch open, 21 QQ =  and .012 =− QQ  After the switch is closed, 

C315;C31512 µµQQ =− of charge flowed through the switch. 
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     C.107.50V)(36F)1.2( 5

eq

−×===⇒ µVCQ    

 b) .J101.36V)(36F)1.2( 32

2
12

2
1 −×=== µCVU  

 c) If the capacitors are all in parallel, then: 
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 d) .J101.22V)(10.8F)21( 32

2
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1 −×=== µCVU  

 

 



24.62: a) F102.4
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1 6
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     C101.58V)(600F)104.2( 36
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−− ×=×==⇒ VCQ  

and .V265V395V660V395F)(4.0C)1058.1(/ 3

3

22 =−=⇒=×== −
VµCQV  

 b)  Disconnecting them from the voltage source and reconnecting them to 

themselves we must have equal potential difference, and the sum of their charges must be 

the sum of the original charges: 

C.101.90V)(316F)1000.6(
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24.63: a) Reducing the furthest right leg yields ( ) =++= −1

F9.6
1

F9.6
1

F9.6
1

µµµC   

.3/F3.2 1Cµ =  It combines in parallel with a .F9.6F3.2F6.4 12 CµµµCC ==+=⇒  So 

the next reduction is the same as the first: .3/F3.2 1CµC == And the next is the same as 

the second, leaving 3 1C ’s in series so .3/F3.2 1eq CµC ==  

 b) For the three capacitors nearest points a and b: 

C109.7V)(420F)103.2( 46

eq1

−− ×=×== VCQC  

and .C106.443V)(420F)106.4( 46

222

−− ×=×== VCQC  

 c) ( ) ,V46.7V
3

420
3
1 ==cdV since by symmetry the total voltage drop over the 

equivalent capacitance of the part of the circuit from the junctions between ca,   and 

bd ,  is V,
3

420  and the equivalent capacitance is that of three equal capacitors 1C in series. 

cdV  is the voltage over just one of those capacitors, i.e., .Vof31
3

420  

 

 

24.64: (a) F60321equiv µCCCC =++=  

 C7200)V(120F)60( µµCVQ ===  
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24.65: a) Q is constant. 

 with the dielectric: )( 0KCQCQV ==  

without the dielectric: 00 CQV =  

3.91V)V)/(11.5(45.0so,/0 === KKVV  

b)  

 
Let dAεC 00 =  be the capacitance with only air between the plates. With the 

dielectric filling one-third of the space between the plates, the capacitor is equivalent to 

21 and CC  in parallel, where 3/2hasand3/has 2211 AACAAC ==  
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24.66: a) This situation is analagous to having two capacitors 1C  in series, each with 

separation ).(
2
1 ad −  Therefore ( ) .00

11 2)(2
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c) As .,asAnd.,0 0 ∞→→→→ CdaCCa  

 

 

24.67: a) One can think of “infinity” as a giant conductor with .0=V  

b) ,4 0)4/( 0
RπεC

RπεQ

Q

V

Q ===  where we’ve chosen 0=V  at infinity. 

c) F.107.1m)10(6.444 46

00

−×=×== πεRπεC earthearth  Larger than, but 

comparable to the capacitance of a typical capacitor in a circuit. 
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d) This energy is equal to 
Rπε

Q

0

2

42
1  which is just the energy required to assemble all 

the charge into a spherical distribution. (Note, being aware of double counting gives the 

factor of 21 in front of the familiar potential energy formula for a charge Q a distance R 

from another charge Q.) 

e) From Equation (24.9): 
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Problem (24.67). 

 

 

24.69:       a) 
⋅

=






==<
6

222

30

2

0
82

1

2

1
:

πR

rkQ

R

kQr
εEεuRr  

b) .
82

1

2

1
:

4

22

20

2

0
πr

kQ

r

kQ
εEεuRr =







==>  

c) .
102

4:
2

0

4

6

2

0

2

R

kQ
drr

R

kQ
udrrπudVURr

RR

====< ∫∫∫  

 .
5

3

22
4:

22

2

2
2

R

kQ
U

R

kQ

r

drkQ
udrrπudVURr

RR

=⇒====> ∫∫∫
∞∞
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c) Using Equation (24.9): 
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24.72: This situation is analagous to having two capacitors in parallel, each with an 

area .
2
A So: 
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24.73: a) V/m.100.1
)4.5(

C/m1050.0 7

0

23
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×=
×

==
−

εKε

σ
E  

  b) V.0.052m)10(5.0V/m)100.1( 97 =××== −EdV  The outside is at the higher 

potential. 

  c) volume m1088.2m10 6316 −− ×≈⇒= R  

⇒  shell volume 3199262 m105.2m)100.5(m)1088.2(44 −−− ×=××== πdπR  

J.1036.1)m102.5(V/m)100.1()4.5(V)( 1531927
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1 −− ×=××===⇒ εEKεuVU   

 

 

24.74: a) C.1033.1
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d

AKε
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  b) C.107.981/2.50)(1C)1033.1()/11( 76 −− ×=−×=−= KQQi  

  c) V/m.1001.3
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  d) J.102.00V)(3000C)1033.1(
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2
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3
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m)0100.0()m(0.200

J1000.2

Ad

U
u or 

             .J/m00.1V/m)1001.3()50.2( 325

02
12

02
1 =×== εEKεu  

  f) In this case, one does work by pushing the slab into the capacitor since the 

constant potential requires more charges to be brought onto the plates. When the charge 

is kept constant, the field pulls the dielectric into the gap, with the field (or charges) 

doing the work. 

 

 



24.75: a) We are to show the transformation from one circuit to the other: 

 

 
 

 From Circuit 1:
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 Setting the coefficients of the charges equal to each other in matching potential 

equations from the two circuits results in three independent equations relating the two 

sets of capacitances. The set of equations are: 
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 From these, subbing in the expression for ,K  we get: 
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24.76: a) The force between the two parallel plates is: 
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 b) When ,0=V  the separation is just .0z So: 
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  c) For V,120 and N/m,25m,102.1,m300.0 3

0

2 ==×== − VkzA  

mm.1.014mm,537.00m1082.3m)104.2(2 310233 =⇒=×+×− −− zzz  

  d) Stable equilibrium occurs if a slight displacement from equilibrium yields a 

force back toward the equilibrium point. If one evaluates the forces at small 

displacements from the equilibrium positions above, the 1.014 mm separation is seen to 

be stable, but not the 0.537 mm separation. 

 

 

24.77: a) ).)1(())(( 00
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D

Lε
xKLLxL

D

ε
C −+=+−=  

 b) 2)(
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   c) If the charge is kept constant on the plates, then: 
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 d) Since ,
2

)1(
2

0 dxFdxdU
D

LVεK −−=−=  then the force is in the opposite direction to the 

motion ,dx meaning that the slab feels a force pushing it out. 

 

 



24.78: a) For a normal spherical capacitor: ( ).4 00 ab

ba

rr

rr
πεC −=  Here we have, in effect, two 

parallel capacitors, LC  and UC . 
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 b) Using a hemispherical Gaussian surface for each respective half: 
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    c) The free charge density on upper and lower hemispheres are: 
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     e) There is zero bound charge on the flat surface of the dielectric-air interface, or else 

that would imply a circumferential electric field, or that the electric field changed as we 

went around the sphere. 

 

 
24.79: a) 
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24.80: a) The capacitors are in parallel so: 
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  b) For gasoline, with :95.1=K  
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  c) For methanol, with :33=K  
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 d) This kind of fuel tank sensor will work best for methanol since it has the greater 

range of effK  values. 
 



Capítulo 25 



25.1: C.1089.3)s3600)(3)(A6.3( 4×=== ItQ  

 

25.2: a) A.1075.8bygivenisCurrent 2

)s60(80

C420 −×===
t

Q
I  

     b) AnqvI d=  

        
))m103.1(π)(C106.1)(108.5(

A1075.8
231928

2

−−

−

×××
×

==⇒
nqA

I
vd  

         = .sm1078.1 6−×  

 

25.3: a) 
))m1005.2)(4π)(C106.1)(105.8(

A85.4
231928 −− ×××

==
nqA

I
vd  

                     sm1008.1 4−×=  

    min110s6574timetravel
sm1008.1

m71.0
4 ====⇒ −×dv

d  

     b) If the diameter is now 4.12 mm, the time can be calculated using the formula above 
or comparing the ratio of the areas, and yields a time of 26542 s =442 min. 
     c) The drift velocity depends on the diameter of the wire as an inverse square 
relationship. 
 

 
25.4: The cross-sectional area of the wire is 

  .m10333.1)m1006.2( 25232 −− ×=×== ππrA  

     The current density is 

  25
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mA1000.6

m10333.1

A00.8
×=

×
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     Therefore; haveWe neJvd =  
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25.5: constant.isso, dd vJvqnJ =  

    ,2211 dd vJvJ =  

sm1000.6)20.100.6)(sm1020.1()()( 44

1211212

−− ×=×=== IIvJJvv ddd  

 

 



25.6: The atomic weight of copper is mole,g55.63 and its density is .cmg96.8 3  The 

number of copper atoms in thusism00.1 3  

moleg55.63

)moleatoms10023.6)(mcm1000.1)(cmg96.8( 233363 ××
 

328 matoms1049.8 ×=  

Since there are the same number of free 3melectrons  as there are atoms of 3mcopper  

(see Ex. 25.1), The number of free electrons per copper atom is one. 
 

25.7: Consider 1 3m  of silver. 

      kg105.10so,mkg105.10density 333 ×=×= m  

     andmol10734.9so,molkg10868.107 43 ×==×= − MmnM    
328

A matoms1086.5 ×== n��  

      If there is one free electron per .melectronsfree1086.5arethere,m 3283 ×  This 

agrees with the value given in Exercise 25.2. 
 
 

25.8: a) C0106.0)C1060.1)(1068.21092.3()( 191616

NaCl =××+×=+= −ennQtotal  

.mA6.10A0106.0
s00.1

C0106.0
====⇒

t

Q
I total

 

     b) Current flows, by convention, in the direction of positive charge. Thus, current 

flows with +Na  toward the negative electrode. 
 

25.9: a) C.329
3

65.0
55)65.055( ||

8

0

3
8

0

8

0

2

8

0

=+=−== ∫∫ ttdttdtIQ  

     b) The same charge would flow in 10 seconds if there was a constant current of: 

A.1.41)s8()C329( === tQI  

 

 

25.10: a) .A/m1081.6 25

)m103.2(

A6.3
23 ×=== −×A

IJ  

      b) .mV012.0)A/m1081.6)(m1072.1( 258 =×⋅Ω×== −ρJE  

     c) Time to travel the wire’s length: 
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25.11: .125.0
)m1005.2)(4(

)m0.24)(m1072.1(
23

8

Ω=
×
⋅Ω×

== −

−

πA

ρL
R  

 



25.12: m.75.9
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25.13: a) tungsten: 
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       b) aluminum: 
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25.14: 
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25.15: Find the volume of one of the wires: 

      andso
R

ρL
A

A

ρL
R ==  

      mcb10686.1
Ohm125.0

)m50.3)(mOhm1072.1
volume 6
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      g15)m10686.1)(mkg109.8()density( 3633 =××== −Vm  

 

 

25.16:  
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==

==
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25.17: a) From Example 25.1, an 18-gauge wire has 23 cm1017.8 −×=A  

 A820)cm1017.8)(A/cm100.1( 2325 =××== −JAI  

b) 2326 cm100.1)cmA100.1()A1000( −×=×== JIA  

 cm0178.0cm100.1(so 232 =×=== − ππArπrA   

 mm36.02 == rd   

 

 
25.18: Assuming linear variation of the resistivity with temperature: 
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)](1[

ρ

ρ

TTρρ

=

°−°×+=

−α+=
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Since ,JE=ρ  the electric field required to maintain a given current density is 

proportional to the resistivity. Thus mV132.0)mV0560.0)(35.2( ==E  
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25.20: The ratio of the current at C20°  to that at the higher temperature is 

.909.3)A220.0()A860.0( = Since the current density for a given field is inversely 

proportional to ),( JEρρ =  The resistivity must be a factor of 3.909 higher at the higher 

temperature. 
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25.21: 
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25.22: m.1037.1
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25.23: a) A.1.11
)m1044.2(

))m1084.0(4)(mV49.0(
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=== −
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EA
JAI  

      b) .V13.3
)m1084.0)(4(
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      c) Ω.28.0
A1.11
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V
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25.24: Because the density does not change, volume stays the same, so )2)(2( ALLA =  

and the area is halved. So the resistance becomes: 

   .44
2

)2(
0R

A

ρL

A

Lρ
R ===  

That is, four times the original resistance. 
 

 

25.25: a) .mV25.1
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25.27:a) .54.99)C5.11)(C0004.0(100100)( 1 Ω=°°Ω−Ω=⇒−=− −
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fifiif RTTRRR α  
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25.29: a) If 120 strands of wire are placed side by side, we are effectively increasing the 
area of the current carrier by 120. So the resistance is smaller by that factor: 

.1067.41201060.5 86 Ω×=Ω×= −−R  

      b) If 120 strands of wire are placed end to end, we are effectively increasing the 

length of the wire by 120, and so .1072.6120)Ω1060.5( 46 Ω×=×= −−R   

 

 
25.30: With the Ω0.4  load, where r = internal resistance 

Ir )0.4(V6.12 Ω+=  

Change in terminal voltage: 

r
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rIVT

V2.2

V2.2V4.10V6.12

=

=−==∆
 

Substitute for I: 




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
Ω+=

r
r

V2.2
)0.4(V6.12  

       Solve for r: Ω= 846.0r  

 

25.31: a) Ω=
×Ω×
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219.0
)m050.0(

)m10100)(m1072.1
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38

πA

L
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 V4.27)219.0)(A125( =Ω== IRV  

     b) J/s3422W3422A)125)(V4.27( ====VIP  

 J1023.1)s3600)(J/s3422(Energy 7×=== Pt  

 

 

25.32: a) Ω==⇒=−=−= 700.0A00.4V8.2V8.2V2.21V0.24 rVV abr ε . 

      b) .30.5A00.4V2.21V2.21 Ω==⇒= RVR  

 

25.33: a) An ideal voltmeter has infinite resistance, so there would be NO current 
through the resistor.0.2 Ω  

      b) ;V0.5== εabV  since there is no current there is no voltage lost over the internal 

resistance. 
      c) The voltmeter reading is therefore 5.0 V since with no current flowing, it measures 
the terminal voltage of the battery. 
 

 



25.34: a) A voltmeter placed over the battery terminals reads the emf: .V0.24=ε  

     b) There is no current flowing, so .0=rV  

     c) The voltage reading over the switch is that over the battery: .V0.24=sV  

    d) Having closed the switch: 

.V9.22)28.0)(A08.4(V0.24A08.488.5V0.24 =Ω−=⇒=Ω= abVI  

.V9.22)60.5)(A08.4( =Ω== IRVr  

,0=sV  since all the voltage has been “used up” in the circuit. The resistance of the 

switch is zero so .0== IRVs  

 

 
25.35: a) When there is no current flowing, the voltmeter reading is simply the emf of 
the battery: .V08.3=ε  

      b) The voltage over the internal resistance is: 

  .067.0
A65.1

V11.0
V11.0V97.2V08.3 Ω===⇒=−=

I

V
rVr  

      c) RVR )A65.1(V97.2 ==  

 Ω== 8.1
A65.1

V97.2
R  

 

 
25.36: a) The current is counterclockwise, because the 16 V battery determines the 
direction of current flow. Its magnitude is given by: 

 A.47.0
0.94.10.56.1

V0.8V0.16
=

Ω+Ω+Ω+Ω
−

=
∑
∑

=
R

I
ε

 

      b) .V2.15)A47.0)(6.1(V0.16 =Ω−=abV  

      c) V.0.11V0.8)A47.0)(4.1()A47.0)(0.5( =+Ω+Ω=acV  

     d)  

 
 



25.37: a) Now the current flows clockwise since both batteries point in that direction: 

  A.41.1
9.01.45.01.6

V0.8V0.16
=

Ω+Ω+Ω+Ω
+

=
∑
∑

=
R

I
ε

 

      b) .V7.13)A41.1)(6.1(V0.16 −=Ω+−=abV  

      c) .V0.1V0.8)A41.1)(4.1()A41.1)(0.5( −=+Ω−Ω−=acV  

d) 

 
 

 

25.38: a) A.21.00.9V9.1V9.1 =Ω==⇒= bcbcbc RVIV  

       b) .1.26
21.0

48.5
)A21.0)()4.10.96.1((V0.8 Ω==⇒Ω+++=⇒∑=∑ RRIRε  

       c)  

 
 
25.39: a) Nichrome wire: 
 

 
 
      b) The Nichrome wire does obey Ohm’s Law since it is a straight line. 
      c) The resistance is the voltage divided by current which is .88.3 Ω  

 



25.40: a) Thyrite resistor: 

 
 
       b) The Thyrite is non-Ohmic since the plot is curved. 
       c) Calculating the resistance at each point by voltage divided by current: 
 

 
 

 

25.41: a) .101.0A8.14V50.1 Ω=== Ir ε  

      b) .22.0A8.6V50.1 Ω=== Ir ε  

      c) .0126.0A1000V6.12 Ω=== Ir ε  

 

 

25.42: a) .688.0W327)V15( 222 Ω===⇒= PVRRVP  

      b) A.8.21
688.0

V15
=

Ω
==⇒=

R

V
IIRV  

 

 
25.43: W.520)A80.0)(V650( ===VIP  

 

 

25.44: .J6318)s3600)(5.1)(V9)(A13.0( ==== IVtPtW  

 



25.45: a) since
)(

vol

2
2222

2 JEpJ
L

ALAJ

AL

RAJ

AL

RIP
pRIP =⇒=====⇒= ρ

ρ
 

.JE ρ=  

       b) .(a)From 2ρJp =  

       c) .becomes(a),Since 2 ρEpρEJ ==  

25.46: a) =Ω==⇒=Ω=∑= Ω )0.5()A47.0(A47.017V0.8 22

5 RIPRI totalε  

W.0.2)0.9()A47.0(andW1.1 22

9 =Ω==Ω RIP  

       b) .W2.7)6.1()A47.0()A47.0)(V16( 22

16 =Ω−=−= rIIP εV  

       c) W.1.4)4.1()A47.0()A47.0)(V0.8( 22

8 =Ω+=+= IrIP εV  

      d) )c()a()b( +=  

 

 

25.47: a) J.1059.2)s3600)(V12)(A60( 6×==== IVtPtW  

       b) To release this much energy we need a volume of gasoline given by: 

.liters062.0m1022.6
mkg900

kg056.0
volg0.56

gJ000,46

J1059.2 35

3

6

=×===⇒=
×

= −

ρ
m

m  

      c) To recharge the battery: 

.h6.1)W450()Wh720()( === PWht  

 

 

25.48: a) .W4.14)A2.1)(V12(A2.110V12)( ===⇒=Ω=+= IPrRI εε  

This is less than the previous value of 24 W. 

       b) The work dissipated in the battery is just: W.9.2)0.2()2.1( 22 =Ω== ArIP  

This is less than 8 W, the amount found in Example (25.9). 

       c) The net power output of the battery is W.11.5W2.9W4.14 =− This is less than 

16 W, the amount found in Example (25.9). 

 

 

25.49: a) W.24)A0.2()V12(A0.26V12 ===⇒=Ω== IPRVI ε  

      b) The power dissipated in the battery is .W0.4)0.1()A0.2( 22 =Ω== rIP  

      c) The power delivered is then .W20W4W24 =−  

 

 

25.50: a) ∑ ==⇒=Ω== W.529.0A18.017/V0.3/ 2RIPRI ε  

      b) .J9530)s3600)(0.5)(V0.3)(A18.0( ==== IVtPtW  

      c) Now if the power to the bulb is 0.27 W, 

.8.6567)17()17(
17

V0.3
W27.0 22

2

2 Ω=⇒Ω=+Ω⇒Ω








+Ω
=⇒= RR

R
RIP  

 

 



25.51: a) .26.7W540/)V120( 222 Ω===⇒= PVRRVP  

     b) .A5.47.26/V120 =Ω== RVI  

     c) If the voltage is just 110 V, then W.454A13.4 ==⇒= VIPI  

     d) Greater. The resistance will be less so the current drawn will increase, increasing 
the power. 
 

25.52: From Eq. (25.24), .
2τne

m
ρ =  

.s1055.1
m)2300(C)1060.1()m100.1(

kg1011.9 12

219316

31

2

−
−−

−

×=
⋅Ω××

×
==⇒

ρne

m
τ  

      b) The number of free electrons in copper )m105.8( 328 −×  is much larger than in 

pure silicon ).m100.1( 316 −×  

 

 

25.53: a) m.1065.3
m0.14

m)1050.2()4()104.0( 8
23

⋅Ω×=
×Ω

== −
−π

L

RA
ρ  

       b) .A172
m1065.3

m)1050.2()4()mV28.1(
8

23

=
⋅Ω×
×

=== −

−π

ρ

EA
JAI  

       c) 
C)106.1()m10(8.5m)10(3.65

V/m28.1
193288 −−− ××⋅Ω×

===
ρnq

E

nq

J
vd  

  m/s.1058.2 3−×=  

 

 
25.54: r = 2.00 cm 
 T = 0.100 mm 

 
 

 
ρl

πrTV

ρl

VA

Aρl

V

R

V
I

)2(
====  

 
m)(25.0m)10(1.47

m)10(0.100m)1000.2)(2()V12(
8

32

⋅Ω×
××

= −

−−π
 

 A410=  

 

 



25.55: With the voltmeter connected across the terminals of the battery there is no 
current through the battery and the voltmeter reading is the battery emf; .V6.12=ε  

With a wire of resistance R connected to the battery current I  flows and 
0=−− IRIrε  

Call the resistance of the 20.0-m piece ;1R  then the resistance of the 40.0-m piece 

is 12 2RR = . 

;0111 =−− RIrIε  0A)(7.00A)(7.00V6.12 1 =−− Rr  

;0)2( 122 =−− RIrIε  0)2)(A20.4()A20.4(V6.12 1 =−− Rr  

Solving these two equations in two unknowns gives .20.11 Ω=R  This is the 

resistance of 20.0 m, so the resistance of one meter is Ω=Ω 0.060(1.00m)m)]0.20/(20.1[  

 

 

25.56: a) 
AgCu RR

V

R

V
I

+
==  

and 

 ,049.0
m)10(6.0/4)(

m)(0.8m)1072.1(
24

8

Ω=
×

⋅Ω×
==

−

−

πA

Lρ
R

Cu

CuCu

Cu  

and 

 Ω=
×
⋅Ω×

== −

−

062.0
m)10(6.0/4)(

m)(1.2m)1047.1(
24

8

πA

Lρ
R

Ag

AgAg

Ag  

 A.45
062.0049.0

V0.5
=

Ω+Ω
=⇒ I  

So the current in the copper wire is 45 A. 
      b) The current in the silver wire is 45 A, the same as that in the copper wire or else 
charge would build up at their interface. 

     c) .mV76.2
m8.0

)049.0()A45(
=

Ω
===

Cu

Cu
CuCu

L

IR
JρE  

     d) .mV33.2
m2.1

)062.0()A45(
=

Ω
===

Ag

Ag

AgAg
L

IR
JρE  

    e) .V79.2)062.0()A45( =Ω== AgAg IRV  

 
 

 



25.57: a) The current must be the same in both sections of the wire, so the current in the 
thin end is 2.5 mA. 

     b) V/m.1014.2
)A106.1()4(

)A10(2.5m)1072.1( 5

23

38

1.6mm

−
−

−−

×=
×

×⋅Ω×
===

πA

ρI
ρJE  

     c) 
23

38

0.8mm
)A1080.0()4(

)A10(2.5m)1072.1(
−

−−

×

×⋅Ω×
===

πA

ρI
ρJE  

   = ).4(V/m1055.8 1.6mm

5 E=× −  

     d) mm8.0mm8.0mm1.6mm1.6 LELEV +=  

V.101.80m)(1.80V/m)10(8.55m)(1.20V/m)1014.2( 455 −−− ×=×+×=⇒V  

 

 

25.58: a) 






= 2

2

1
 

volume
dmvn

K
 

 

.m/J107.8

m/s)10(1.5kg)1011.9()m105.8(
2

1

volume
310

2431328

−

−−−

×=

×××=⇒
K

 

     b) =××=== −−− )V0.1()m10()C106.1()m105.8()volume( 3619328VneqVU 13600 J. 

And the kinetic energy in 3cm0.1  is =×= −− m)10()J/m107.8( 6310K  

.106.1
J107.8

J13600
So.J108.7 19

16

16 ×=
×

=×
−

−

K

U
 

 
 



25.59: a)  

 
 

  .where 21
12

x
h

rr
rr

πr

ρdx

A

ρL
dR 







 −
−===  

  
( )( )

.
11

)( 2121

0

2

21

2

1

2

1

2

1

21









=⇒

−
=

−
−=

−
=⇒ ∫ ∫−

rrπ

ρh
R

urrπ

ρh

u

du

)rπ(r

ρh

xrπ

dxρ
R

r

r

h r

rh

rr

 

     b) When .,
221

A

ρL

πr

ρh
Rrrr ====  

 

 

25.60: a) .
11

4

1

444 22 






 −=−==⇒= ∫ baπ

ρ

rπ

ρ

r

dr

π

ρ
R

πr

ρdr
dR

b

a

b

a

 

     b) .
)(4)(

4

)(

4
22 rabρ

abV

πrabρ

πabV

A

I
J

abρ

πabV

R

V
I abababab

−
=

−
==⇒

−
==  

     c) If the thickness of the shells is small, we have the resistance given by: 

  . where,
44

)(11

4 2
abL

A

ρL

πa

ρL

πab

abρ

baπ

ρ
R −==≈

−
=







 −=  

 

 

25.61: ===⇒=⇒===
ρKε

Q

AKε

Q

AKε

Q

Kε
σ IAJρJEρJE

0000
and  leakage current. 

 

 



25.62: a) ( ) ./ L
V

AAL
V

RA
V

A
I

R
V JI ρρ ====⇒=  So to make the current density a 

maximum, we need the length between faces to be as small as possible, which means 

.dL =  So the potential difference should be applied to those faces which are a distance 

d apart. This maximum current density is .
ρd
V

MAXJ =  

 
 

     b) For a maximum current JAI
Lρ

VA
R
V ===  must be a maximum. The maximum area 

is presented by the faces that are a distance d apart, and these two faces also have the 
greatest current density, so again, the potential should be placed over the faces a distance 

d apart. This maximum current is 

     .6
ρ

Vd
IMAX =  

 

25.63: a) .057.0
m)(0.0016)4(

m)(0.12m)105.9(
2

7

Ω=
⋅Ω×

==
−

πA

ρL
R  

      b) C)40())(0.00088(C(1)m105.9()C 60()1()( 17

0 °°+⋅Ω×=°⇒∆+= −−ρTαρTρ  

 m.103.34m109.83C)60( 87 ⋅Ω×=∆⇒⋅Ω×=°⇒ −− ρρ  

      

      c) ×°×=∆=∆⇒∆=∆⇒∆=∆ −− ))C(1018()( 15

000 TβLLTβLALATβVV  

mm.0.86m108.64C)(40m)12.0( 4 =×=∆⇒° −L The volume of the fluid remains 

constant. As the fluid expands the container, outward expansion “becomes” upward 
expansion due to surface effects. 

      d) 
A

Lρ

A

ρL
R

A

ρL
R

∆
+

∆
=∆⇒=  

  

.1040.2

m)(0.0016/4)(

m)10(0.86m)1095(

m)(0.0016/4)(

m)(0.12m)1034.3(

3

2

38

2

8

Ω×=

×⋅Ω×
+

⋅Ω×
=∆⇒

−

−−−

ππ
R

 

       e) From  Equation (25.12), ( ) ( )=−=−= Ω
Ω×+Ω

°∆

−

11
057.0

)1040.2057.0(

C40
11

3

0R
R

T
α  

.)C(101.1 13 −− °×  This value is greater than the temperature coefficient of resistivity and 

therefore is an important change caused by the length increase. 
 
 



25.64: a) A167.0
0.24

V0.4V0.8
=

Ω
−

==
∑
∑

R
I

ε
 

         V.6.58)(8.50A)(0.167V00.8 =Ω−=⇒ adV  

        b) The terminal voltage is 
 

  .V08.4)50.0()A167.0(V00.4 +=Ω++=bcV  

 
        c) Adding another battery at point d in the opposite sense to the 8.0 V battery: 
 

  soand,A257.0
5.24

V4.0V0.8V3.10
=

Ω
+−

==
∑
∑

R
I

ε
 

  V.3.87)(0.50A)(0.257V00.4 =Ω−=⇒ bcV  

 

 

 

 

25.65: a) rrIrV εεεab A)(3.50V9.4andA)(1.50 V4.8 +=−=⇒−=  

  
.2.0

A5.00

V8.4V9.4

A)(3.50)A)(1.50V(8.4V4.9

Ω=
−

=⇒

++=⇒

r

rr

 

       b) V.8.7)(0.20A)(1.50V4.8 =Ω+=ε  

 

 
25.66: a) A.1.17)k2k10(/kV14/ =Ω+Ω== RVI  

      b) kW.7.13)000,10(A)17.1( 22 =Ω== RIP  

      c) If we want the current to be 1.0 mA, then the internal resistance must be: 

  .M14k10M14104.1
A0.001

V000,14 7 Ω≈Ω−Ω=⇒Ω×==+ RrR  

 

 

25.67: a) .1000
m)(0.050

m)(0.10m)0.5(
2

Ω=
⋅Ω

==
πA

ρL
R  

      b) V.100)(1000A)10100( 3 =Ω×== −IRV  

      c) W.10A)10100()V100( 3 =×== −VIP  

 

 



25.68: a) V.0.4360.050.2 2 =+= IIV  Solving the quadratic equation yields 

A,8.29orA34.1 −=I  so the appropriate current through the semiconductor is 

.A34.1=I  

      b) If the current A,68.2=I  

  V.3.9A)68.2()A/V(0.36A)(2.68A)/V50.2( 22 =+=⇒V  

 

 

25.69: 22 )()( βIIRαβIαIIRIVIRV ++=++=+=  

 
.A42.106.12)2.38.3()3.1(

0)(

2

2

=⇒=−++⇒

=−++⇒

III

VIαRβI
  

 

 

25.70: a) .A42.2
4.285.0

V86.7
85.0

A25.9

V86.7
=

Ω+Ω
=

+
=⇒Ω===

rR
I

I
r

εε
 

      b) 086.7)85.050.2(36.00)( 22 =−++⇒=−++ IIIrαβI ε  

          A94.1=⇒ I  

      c) The terminal voltage at this current is 

  V.21.6)85.0()A94.1(V86.7 =Ω−=−= IrV εab  

 
 
25.71: a) With an ammeter in the circuit: 

 ).( AA

A

RRrI
RRr

I εε
++=⇒

++
=  

So with no ammeter: 

 . 1 








+
+=









+
++

=
+

=
Rr

R
I

Rr

RRr
I

Rr
I A

A
A

A

ε
  

     b) We want: 

 

.0425.0

)8.3 45.0()01.0(01.001.11

Ω=

Ω+Ω⇒≈
+

⇒≈








+
+= A

AA

A

R
Rr

R

Rr

R

I

I

 

     c) This is a maximum value, since any larger resistance makes the current even less  
that it would be without it. That is, since the ammeter is in series, ANY resistance it has 
increases the circuit resistance and makes the reading less accurate. 
 

 



25.72: a) With a voltmeter in the circuit: 

. 1 








+
−=−=⇒

+
=

V

ab

V Rr

r
IrV

Rr
I εεε

 

      b) We want: 

 

.6.440459999
01.0

01.0

01.099.01

Ω=Ω⋅==
−

≈⇒

≈
+

⇒≈








+
−=

r
rr

R

Rr

r

Rr

rV

V

VV

ab

ε
 

       c) This is the minimum resistance necessary—any greater resistance leads to less 
current flow and hence less potential loss over the battery’s internal resistance. 

 
 
25.73: a) The line voltage, current to be drawn, and wire diameter are what must be 

considered in household wiring. 

      b) ,A35
V120

W4200
===⇒=

V

P
IVIP  so the 8-gauge wire is necessary, since it can 

carry up to 40 A. 

      c) .W106
m)26003.0()4(

)m(42.0m)1072.1()A35(
2

822
2 =

⋅Ω×
===

−

πA

ρLI
RIP  

      d) If 6-gauge wire is used, 

 

.25.19$)kWh11.0$()kWh175(Savings

kWh175)h12()365()W40(

W66
m)(0.00412))4(

m)(42m)Ω10(1.72A)(35
2

822

==⇒

==∆=∆⇒

=
⋅×

==
−

PtE

πA

ρLI
P

 

 
 

25.74: Initially: .9.88)A35.1()V120(00 Ω=== IVR  

        Finally: .6.97)A23.1()V120( Ω=== ff IVR  

.C237C20C217C217

1
9.88

6.97

C105.4

1
1

1
)()(1  And

0

14

0

00

0

°=°+°=⇒°=−⇒









−

Ω
Ω

°×
=








−=−⇒−+= −−

ff

f

ff

f

TTT

R

R

α
TTTTα

R

R

 

       b) (i) W162A)(1.35V)120(00 ===VIP  

 (ii) W148A)(1.23V)120( === ff VIP   

 
 



25.75: a) A.40.0
0.10

V8.0V0.12
=

Ω
−

=
Σ
Σ

=
R

I
ε

 

      b) .W6.1)10()A40.0( 22 =Ω== totaltotal RIP  

      c) Power generated in W.8.4)A40.0()V0.12(, 11 === IP εε  

      d) Rate of electrical energy transferred to chemical energy in 

W.3.2A)(0.40V)(8.022 =×== IP εε  

      e) Note (d),(b)c)( +=  and so the rate of creation of electrical energy equals its rate 

of dissipation. 
 
 

25.76: a) Ω×=
⋅Ω×

== −
−

3

2

7

1057.1
m)018.0()4(

m)(2.0m)100.2(

π
ρ
A

L
Rsteel  

        

V.204)012.01057.1()A15000()(

012.0
)m008.0()4(

)m(35m)1072.1(

3

2

8

=Ω+Ω×=+==⇒

Ω=
⋅Ω×

==

−

−

Custeel

Cu

RRIIRV

πA

ρL
R

 

      b) J.199)s1065()0136.0()A15000( 622 =×Ω=== −RtIPtE  

 

 

25.77: a) .
||

|| 
E

a

m

q
EqmaF =⇒==Σ  

       b) If the electric field is constant, .
||

bc

bc
V

aL

m

q
ELV =⇒=  

       c) The free charges are “left behind” so the left end of the rod is negatively charged, 
while the right end is positively charged. Thus the right end is at the higher potential. 

       d) .m/s105.3
m)50.0()kg1011.9(

)C10(1.6V)100.1(|| 28

31

193

×=
×

××
== −

−−

mL

qV
a bc  

       e) Performing the experiment in a rotational way enables one to keep the 
experimental apparatus in a localized area—whereas an acceleration like that obtained in 
(d), if linear, would quickly have the apparatus moving at high speeds and large 
distances. 

 

 



25.78: a) We need to heat the water in 6 minutes, so the heat and power required are: 

 
W.233

)s60(6

J83800

J83800)C80()CJ/kg4190()kg250.0(

===⇒

=°°=∆=

t

Q
P

TmcQ v

   

 But .8.61
W233

)V120( 222

Ω===⇒=
P

V
R

R

V
P  

      b) .m39
m1000.1

)m105.2()8.61(vol

vol 6

352

=
⋅Ω×

×Ω
=

⋅
=⇒== −

−

ρ
ρρ R

L
L

A

L
R  

Now the radius of the wire can be calculated from the volume: 

.m105.4
m)39(

m105.2vol
)(vol 4

35
2 −

−

×=
×

==⇒=
ππL

rπrL  

 

 

25.79: a) .V14.4Ω)(0.24A)10.0(V0.12 =−−=−= IrV εab  

       b) J.1059.2)s3600()5()V4.14()A10( 6×==== IVtPtE  

       c) J.1032.4)s3600()5()24.0()A10( 522 ×=Ω=== rtItPE dissdiss  

       d) Discharged at 10 A: 

 .96.0
A10

)24.0()A10(V0.12
Ω=

Ω−
=

−
=⇒

+
=

I

Ir
R

Rr
I

εε
 

       e) J.1073.1)s3600()5()V6.9()A10( 6×==== IVtPtE  

       f) Since the current through the internal resistance is the same as before, there is the 

same energy dissipated as in (c): .J1032.4 5×=dissE  

       g) The energy originally supplied went into the battery and some was also lost over 
the internal resistance. So the stored energy was less than was needed to charge it. Then 
when discharging, even more energy is lost over the internal resistance, and what is left is 
dissipated over the external resistor. 

 

 



25.80: a) V.2.19)24.0()A30(V0.12 =Ω−−=−= IrV εab  

      b) J.1053.3)s3600()7.1()V2.19()A30( 6×==== IVtPtE  

      c) .J1032.1)s3600()7.1()24.0()A30( 622 ×=Ω=== RtItPE dissdiss   

     d) Discharged at 30 A: 

 .16.0
A30

)24.0()A30(V0.12
Ω=

Ω−
=

−
=⇒

+
=

I

Ir
R

Rr
I

εε
 

      e) J.1081.8)3600()7.1()16.0()A30( 522 ×=Ω=== RtIPtE  

      f) Since the current through the internal resistance is the same as before, there is the 

same energy dissipated as in (c): J.1032.1 6×=dissE  

      g) Again, the energy originally supplied went into the battery and some was also lost 
over the internal resistance. So the stored energy was less than was needed to charge it. 
Then when discharging, even more energy is lost over the internal resistance, and what is 
left is dissipated over the external resistor. This time, at a higher current, much more 
energy is lost over the internal resistance. 
 

 

25.81: a) .)(ln)(ln
1

n

n

T

a
ρρT

ρ

dρ

T

ndT

T

n

dT

dρ

ρ
=⇒=⇒=⇒−=







= −α  

      b) .15.0)K293())K(105( 14 =×−−=−= −−Tn α  

.Km100.8)K293()m105.3( 15.0515.05 ⋅⋅Ω×=⋅Ω×==⇒= −−n

n
Ta

T

a
ρρ  

       c) .m103.4
)K77(

100.8
:K77C196 5

15.0

5

⋅Ω×=
×

==°−= −
−

ρT  

m.102.3
)K573(

100.8
:K573C300 5

15.0

5

⋅Ω×=
×

==°−= −
−

ρT  

 

 

25.82: a) V.kTeVIVIIRIR sdε +−=⇒+Ω=⇒+= ]1)[exp(2)0.1(V00.2  

     b) .667]6676.39[exp1333K293,A1050.1 3 VVTI s +−=⇒=×= −  

     Trial and error shows that the right-hand side (rhs) above, for specific V values, equals     

     1333 V, when .V179.0=V  The current then is just 

  A.80.1]1)179.0(6.39[exp)A105.1(]16.39[exp 3 =−×=−= −VII s  

 

 



25.83: a) dxLx
A

R
A

dxLx

A

dx
dR

A

L
R

L

][exp
]exp[

0

00 −=⇒
−

==⇒= ∫
ρρρρ

  

               .
)1(

)1(]]exp[[
1

0

0010
0

0

−
−

−
==⇒−=−−=⇒

eL

AV

R

V
Ie

A

L
LxL

A
R L

ρ
ρρ

 

      b) ( ).1

)(
)(

1

000

−

−−−

−
==









∂
∂

−=
∂

∂
−=

∂
∂

−=
eL

eV

A

eI

A

LeI

xx

IR

x

V
xE

LxLxLx ρρ
  

      c) 
)1()1(

)0(
)1(

)(
1

1

0

1

0
010 −

−

−−

−

−
−

=⇒+
−

==⇒+
−

=
eL

eV
CC

e

V
VVC

e

e
VxV

Lx

  

                          .
)1(

)(
)(

1

1/

0 −

−−

−
−

=⇒
e

ee
VxV

Lx

 

      d) Graphs of resistivity, electric field and potential from .to0 Lx =  

 

 
 

 

25.84: a) 022 =−=⇒−=⇒
+

= Ir
dI

dP
rIIP

Rr
I εεε

 for maximum power output. 

 .
2

1

2

1
circuitshortmax

I
r

I
ε

P ==⇒  

      b) For the maximum power output of (a), .2
2

1
rRrR

rRr
I

εε
=⇒=+⇒=

+
=   

Then, .
42

22

2

r
r

r
RIP

εε
=







==  

  



Capítulo 26 



26.1: a) .3.12
20

1

32

1
1

eq Ω=






 +=
−

R  

    b) .A5.19
3.12

V240

eq

=
Ω

==
R

V
I  

    c) .A12
20

V240
;A5.7

32

V240
2032 =

Ω
===

Ω
== ΩΩ

R

V
I

R

V
I  

 

 

26.2: .
11

21

21
eq

1

21

21

1

21

eq
RR

RR
R

RR

RR

RR
R

+
=⇒







 +
=








+=

−−

 

 . and 2

21

1
2eq1

21

2
1eq R

RR

R
RRR

RR

R
RR <

+
=<

+
=⇒  

 

 

26.3: For resistors in series, the currents are the same and the voltages add.   a) true.   

b) false. c) .2RIP =  i same, R different so P different; false. d) true. e) V = IR. I 

same, R different; false. f) Potential drops as move through each resistor in the 

direction of the current; false. g) Potential drops as move through each resistor in the 

direction of the current, so ;cVVb >  false. h) true. 

 

 

26.4: a) False, current divides at junction a. 

    b) True by charge conservation. 

    c) True. 
R

IVV
1

so,21 ∝=  

    d) False. .so,but,. 212121 PPIIVVIVP ≠≠==  

    e) False. .,Since. 1212

2

PPRRIVP
R
V <>==  

    f) True. Potential is independent of path. 

    g) True. Charges lose potential energy (as heat) in .1R  

    h) False. See answer to (g). 

    i) False. They are at the same potential. 

 

 



26.5: a) .8.0
8.4

1

6.1

1

4.2

1
1

eq Ω=








Ω
+

Ω
+

Ω
=

−

R  

    b) ;A5.17)6.1()V28(;A67.11)4.2()V28( 6.16.14.24.2 =Ω===Ω== RεIRεI  

.A83.5)8.4()V28(8.48.4 =Ω== RεI  

    c) .A35)8.0()V28( =Ω== totaltotal RεI  

    d) When in parallel, all resistors have the same potential difference over them, so here 

all have V = 28 V. 

    e) =Ω===Ω== )6.1()A5.17(;W327)4.2()A67.11( 2

6.1

2

6.1

2

4.2

2

4.2 RIPRIP  

W.163)8.4()A83.5(;W490 2

8.4

2

8.4 =Ω== RIP  

    f) For resistors in parallel, the most power is dissipated through the resistor with the 

least resistance since constant.with,
2

2 === V
R

V
RIP  

 

 

26.6: a) .8.88.46.14.2eq Ω=Ω+Ω+Ω=Σ= iRR  

    b) The current in each resistor is the same and is .A18.3
8.8

V28

eq

=
Ω

==
R

ε
I  

    c) The current through the battery equals the current of (b), 3.18 A. 

    d) =Ω===Ω== )6.1)(A18.3(;V64.7)4.2)(A18.3( 6.16.14.24.2 IRVIRV  

.V3.15)8.4)(A18.3(;V09.5 8.48.4 =Ω== IRV  

    e)  =Ω===Ω== )6.1()A18.3(;W3.24)4.2()A18.3( 2

6.1

2

6.1

2

4.2

2

4.2 RIPRIP  

.W5.48)8.4()A18.3(;W2.16 2

8.4

2

8.4 =Ω== RIP  

    f) For resistors in series, the most power is dissipated by the resistor with the greatest 

resistance since .constantwith2 IRIP =  

 

 

26.7: a) .V274)000,15)(W0.5(
2

=Ω==⇒= PRV
R

V
P  

    b) .W6.1
000,9

)V120( 22

=
Ω

==
R

V
P  

 

 



26.8: Ω=






















Ω
+

Ω
+









Ω
+

Ω
=

−−

00.5
00.4

1

0.12

1

00.6

1

00.3

1
11

eqR . 

A0.12)00.5()V00.6( =Ω== totaltotal RεI  

A;00.9)0.12(
412

12
;A00.3)0.12(

412

4
412 =

+
==

+
= II  

A00.4)0.12(
63

3
;A00.8)0.12(

63

6
63 =

+
==

+
= II . 

 

 

26.9: Ω=








Ω+Ω
+

Ω+Ω
=

−

00.3
00.700.5

1

00.100.3

1
1

eqR . 

A0.16)00.3()V0.48( =Ω== totaltotal RεI . 

A0.12)0.16(
124

12
;A00.4)0.16(

124

4
3175 =

+
===

+
== IIII . 

 

 

26.10: a) The three resistors 432 and, RRR are in parallel, so:    

Ω=








Ω
+

Ω
+

Ω
=








++=

−−

99.0
50.4

1

50.1

1

20.8

1111
11

432

234
RRR

R  

        Ω=Ω+Ω=+=⇒ 49.499.050.32341eq RRR . 

    b) .V69.4)50.3()A34.1(A34.1
49.4

V0.6
111

eq

1 =Ω==⇒=
Ω

== RIV
R

ε
I  

,A162.0
20.8

33.1
V33.1)99.0()A34.1(

2

22341
234

234
=

Ω
==⇒=Ω==⇒

V

R

V
IRIV

R

R  

.A296.0
50.4

V33.1
andA887.0

50.1

V33.1

4

4

3

3
234234 =

Ω
===

Ω
==

R

V
I

R

V
I

RR
 

 

 



26.11: Using the same circuit as in Problem 27.10, with all resistances the same: 

Ω=








Ω
+Ω=








+++=+=

−−

00.6
50.4

3
50.4

111
11

432

12341eq
RRR

RRRR . 

    a) .A500.0
3

1
A,50.1

00.6

V00.9
1432

eq

1 =====
Ω

== IIII
R

ε
I  

    b) .W125.1
9

1
,W13.10)50.4()A50.1( 1432

2

1

2

11 =====Ω== PPPPRIP  

    c) If there is a break at ,4R  then the equivalent resistance increases: 

.75.6
50.4

2
50.4

11
11

32

1231eq Ω=








Ω
+Ω=








++=+=

−−

RR
RRRR  

And so: 

.A667.0
2

1
A,33.1

75.6

V00.9
132

eq

1 ====
Ω

== III
R

ε
I  

    d) .W99.1
4

1
,W96.7)50.4()A33.1( 132

2

1

2

11 ====Ω== PPPRIP  

    e) So 32 and RR  are brighter than before, while 1R  is fainter. The amount of current 

flow is all that determines the power output of these bulbs since their resistances are 

equal. 

 

 
26.12: From Ohm’s law, the voltage drop across the 6.00 Ω  resistor is V = IR = 

V.24.0)A)(6.0000.4( =Ω  The voltage drop across the 8.00 Ω  resistor is the same, 

since these two resistors are wired in parallel. The current through the 8.00 Ω  resistor is 

then .A00.300.8V0.24 =Ω== RVI  The current through the 25.0 Ω  resistor is the 

sum of these two currents: 7.00 A. The voltage drop across the 25.0 Ω  resistor is V = IR 

= (7.00 A)( 25.0 Ω ) = 175 V, and total voltage drop across the top branch of the circuit is 

175 + 24.0 = 199 V, which is also the voltage drop across the 20.0 Ω  resistor. The 

current through the 20.0 Ω  resistor is then .A95.920V199 =Ω== RVI  

 

 

 

26.13: Current through 2.00-Ω  resistor is 6.00 A. Current through 1.00-Ω  resistor also 

is  

6.00 A and the voltage is 6.00 V. Voltage across the 6.00-Ω  resistor is 12.0 V + 6.0 V = 

18.0 V. Current through the 6.00-Ω  resistor is A.00.3)00.6()V0.18( =Ω  The battery 

voltage is 18.0 V. 

 

 



26.14: a) The filaments must be connected such that the current can flow through each 

separately, and also through both in parallel, yielding three possible current flows. The 

parallel situation always has less resistance than any of the individual members, so it will 

give the highest power output of 180 W, while the other two must give power outputs of 

60 W and  

120 W. 

.120
W120

)V120(
W120 and ,240

W60

)V120(
W60

2

2

2

22

1

1

2

Ω==⇒=Ω==⇒= R
R

V
R

R

V
 

Check for parallel: .W180
80

)V120(

)(

)V120(

)(

2

1

120
1

240
1

2

111

2

21

=
Ω

=
+

=
+

= −
ΩΩ

−
RR

V
P  

    b) If 1R  burns out, the 120 W setting stays the same, the 60 W setting does not work 

and the 180 W setting goes to 120 W: brightnesses of zero, medium and medium. 

    c) If 2R  burns out, the 60 W setting stays the same, the 120 W setting does not work, 

and the 180 W setting is now 60 W: brightnesses of low, zero and low. 

 

 

26.15: a) .A100.0
)800400(

V120
=

Ω+Ω
==

R

ε
I  

    b) =Ω===Ω== )800()A100.0(;W0.4)400()A100.0( 22

800

22

400 RIPRIP  

.W12W8W4W0.8 =+=⇒ totalP  

    c) When in parallel, the equivalent resistance becomes: 

.A449.0
267

V120
267

800

1

400

1

eq

total

1

eq =
Ω

==⇒Ω=








Ω
+

Ω
=

−

R

ε
IR   

.A150.0)A449.0(
800400

400
;A30.0)A449.0(

800400

800
800400 =

+
==

+
= II  

    d) W18)800()A15.0(;W36)400()A30.0( 22

800

22

400 =Ω===Ω== RIPRIP  

.W54W18W36 =+=⇒ totalP  

    e) The 800 Ω  resistor is brighter when the resistors are in series, and the 400 Ω  is 

brighter when in parallel. The greatest total light output is when they are in parallel. 

 

 



26.16: a) .72
W200

)V120(
;240

W60

)V120( 22

W200

22

W60 Ω===Ω===
P

V
R

P

V
R  

  .A769.0
)72240(

V240ε
W200W60 =

Ω+Ω
===⇒

R
II  

    b) 

W.6.42)72()A769.0(;W142)240()A769.0( 22

W200

22

W60 =Ω===Ω== RIPRIP   

    c) The 60 W bulb burns out quickly because the power it delivers (142 W) is 2.4 times 

its rated value. 

 

 

26.17: 

 

 

 ;0)0.50.50.20(V0.30 =Ω+Ω+Ω− I  I = 1.00 A 

 For the Ω-0.20  resistor thermal energy is generated at the rate 

.W0.202 == RIP  

 givesand TmcQPtQ ∆==  

 s1001.1
W0.20

)C0.40()KkgJ4190()kg100.0( 3×=
°⋅

=
∆

=
P

Tmc
t  

 

 



26.18: a)    1

2

11 RIP =  

   Ω=→= 00.5)A2(W20 11

2 RR  

Ω10and1R  in parallel: 

   
A1

A)2()5()10(

10

10

=

Ω=Ω

I

I
 

So 212 and.A50.0 RRI =  are in parallel, so 

    )5()A2()A50.0( 2 Ω=R  

     Ω= 0.202R  

    b) V0.10)5)(A2(1 =Ω==Vε  

    c) From (a): A00.1,A500.0 102 == II  

    d)               (given)W0.201 =P  

              W00.5)20()A50.0( 2

2

2

22 =Ω== RiP  

              W0.10)10()A0.1( 2

10

2

1010 =Ω== RiP  

           W0.35W10W5W20Resist =++=P  

           W35.0V)(10.0A)(3.50Battery === εIP  

            energy. ofon conservati  with theagreeswhich     Battery,Resist PP =  

 
 

26.19: a) .A00.2A00.4A00.6 =−=RI  

    b) Using a Kirchhoff loop around the outside of the circuit: 
  

 .00.50)A00.2()00.3()A00.6(V0.28 Ω=⇒=−Ω− RR  

    c) Using a counterclockwise loop in the bottom half of the circuit: 

   .V0.420)00.6()A00.4()00.3()A00.6( =⇒=Ω−Ω− εε  

    d) If the circuit is broken at point x, then the current in the 28 V battery is: 

    .A50.3
5.003.00

V0.28
=

Ω+Ω
=

∑
∑

=
R

ε
I   

 
26.20:   From the given currents in the diagram, the current through the middle branch 

of the circuit must be 1.00 A (the difference between 2.00 A and 1.00 A). We now use 

Kirchoff’s Rules, passing counterclockwise around the top loop: 

( ) ( )( ) V.18.00Ω1.00Ω4.00A1.00Ω1.00Ω6.00A)(1.00V20.0 11 =⇒=−+++− εε

Now traveling around the external loop of the circuit: 

( )( ) ( )( ) .V0.7000.200.1A00.200.100.6A00.1V0.20 22 =⇒=−Ω+Ω−Ω+Ω− εε  

And 

  ( )( ) .V0.13so,V0.13V0.1800.100.4A00.1V −=+=+Ω+Ω−= baab V  

 

 



26.21: a) The sum of the currents that enter the junction below the Ω-3  resistor equals  

3.00 A + 5.00 A = 8.00 A. 

    b) Using the lower left loop: 

   
( )( ) ( )( )

.V0.36

0A00.800.3A00.300.4

1

1

=⇒

=Ω−Ω−

ε

ε
 

 Using the lower right loop: 

   
( )( ) ( )( )

.V0.54

0A00.800.3A00.500.6

2

2

=⇒

=Ω−Ω−

ε

ε
  

    c) Using the top loop: 

  ( ) .00.9
A00.2

V0.18
0V0.36A00.2V0.54 Ω==⇒=−− RR  

 

 

26.22: From the circuit in Fig. 26.42, we use Kirchhoff’s Rules to find the currents, 1I  

to the left through the 10 V battery, 2I to the right through 5 V battery, and 3I to the right 

through the Ω10  resistor: 

Upper loop: 

  
( ) ( )

( ) ( ) .A00.1000.500.5V0.5

0V00.500.400.100.300.2V0.10

2121

21

=+⇒=Ω−Ω−⇒

=−Ω+Ω−Ω+Ω−

IIII

II
 

Lower loop: ( ) ( ) 00.1000.400.1V00.5 32 =Ω−Ω+Ω+ II  

  ( ) ( ) A00.1200.1000.5V00.5 3232 −=−⇒=Ω−Ω+⇒ IIII  

Along with ,321 III +=  we can solve for the three currents and find: 

     .A600.0,A200.0,A800.0 321 === III  

    b) ( )( ) ( )( ) .V20.300.3A800.000.4A200.0 −=Ω−Ω−=abV  

 

 

26.23: After reversing the polarity of the 10-V battery in the circuit of Fig. 26.42, the 
 only change in the equations from Problem 26.22 is the upper loop where the 10 V  

battery is: 

Upper loop: ( ) ( ) 0V00.500.400.100.300.2V0.10 21 =−Ω+Ω−Ω+Ω−− II  

        ( ) ( ) .A00.3000.500.5V0.15 2121 −=+⇒=Ω−Ω−−⇒ IIII  

Lower loop: ( ) ( ) 00.1000.400.1V00.5 32 =Ω−Ω+Ω+ II  

         ( ) ( ) .A00.1200.1000.5V00.5 3232 −=−⇒=Ω−Ω+⇒ IIII  

Along with ,321 III += we can solve for the three currents and find: 

     .A200.0,A40.1,A60.1 321 −=−=−= III  

    b) ( )( ) ( )( ) .V4.1000.3A60.100.4A40.1 =Ω+Ω+=abV  

 

 



26.24: After switching the 5-V battery for a 20-V battery in the circuit of Fig. 26.42,  
there is a change in the equations from Problem 26.22 in both the upper and lower loops: 

Upper loop: ( ) ( ) 0V00.2000.400.100.300.2V0.10 21 =−Ω+Ω−Ω+Ω− II  

         ( ) ( ) .A00.2000.500.5V0.10 2121 −=+⇒=Ω−Ω−−⇒ IIII  

Lower loop: ( ) ( ) 00.1000.400.1V00.20 32 =Ω−Ω+Ω+ II  

         ( ) ( ) .A00.4200.1000.5V00.20 3232 −=−⇒=Ω−Ω+⇒ IIII  

Along with ,321 III += we can solve for the three currents and find: 

   .A2.1,A6.1,A4.0 321 +=−=−= III  

    b) ( ) ( ) ( )( ) ( )( ) V6.73A4.04A6.134 12 =Ω+Ω=Ω−Ω II  

 

 
26.25: The total power dissipated in the four resistors of Fig. 26.10a is given by the sum  

of: 

 ( ) ( ) ( ) ( ) ,W75.03A5.0,W5.02A5.0
2

3

2

3

2

2

2

2 =Ω===Ω== RIPRIP   

 ( ) ( ) ( ) ( ) W.8.17A5.0,W14A5.0
2

7

2

7

2

4

2

4 =Ω===Ω== RIPRIP  

      .W47432total =+++=⇒ PPPPP  

 

 

26.26: a) If the 12-V battery is removed and then replaced with the opposite polarity, 

the current will flow in the clockwise direction, with magnitude; 

  .A1
16

V4V12
=

Ω
+

=
∑
∑

=
R

ε
I  

    b) ( ) ( ) ( ) .V7V4A174474 −=+Ω+Ω−=++−= εIRRVab  

 

 



26.27: a) Since all the external resistors are equal, the current must be symmetrical 

through them. That is, there can be no current through the resistor R for that would imply 

an imbalance 

in currents through the other resistors. 

 With no current going through R, the circuit is like that shown below at right. 

 

 
 

 

 

 So the equivalent resistance of the circuit is 

  .A13
1

V13
1

2

1

2

1
1

eq =
Ω

=⇒Ω=








Ω
+

Ω
=

−

totalIR  

  ,A5.6
2

1
legeach ==⇒ totalII  and no current passes through R. 

    b) As worked out above, Ω= 1eqR . 

    c) ,0=abV  since no current flows. 

    d) R does not show up since no current flows through it. 

 

 



26.28: Given that the full-scale deflection current is 500 Aµ  and the coil resistance is 

:0.25 Ω  

    a) For a 20-mA ammeter, the two resistances are in parallel: 

 
( )( ) ( )

Ω=⇒

×−×=Ω×⇒=⇒= −−−

641.0

A10500A10200.25A10500 636

s

sssccsc

R

RRIRIVV
 

 

 
 

    b) For a 500-m voltmeter, the resistances are in series: 

  

( )

.9750.25
A10500

V10500
6

3

Ω=Ω−
×
×

=⇒

−⇒⇒+=

−

−

s

c
ab

sscab

R

R
I

V
RRRIV

 

 

 
 

 



26.29: The full-scale deflection current is 0.0224 A, and we wish a full-scale reading for 

20.0 A. 

  

( )( ) ( )( )

.9.1236.9
A0224.0

A499.0

0250.0A0224.0A0.2036.9A0224.0

Ω=Ω−
Ω

=⇒

Ω−=+Ω

R

R

 

 

 
 

 

26.30: a)
( )

A208.0
42523.8

V90

l

=
Ω+Ω

==
totaR

ε
I  

      ( )( ) .3.8823.8A208.0V90 Ω=Ω−=−=⇒ IrεV  

    b) 
( )

.1
1/

−=⇒
+

=
+

=
+

−=−=
V

ε

R

r

Rr

ε

Rr

εR

Rr

εr
εIrεV

VVV

V

V

 

 Now if V is to be off by no more than 4% it requires: .0416.01
4.86

90
=−=

VR

r
 

 

26.31: a) When the galvanometer reading is zero: 

  .and 11212
l

x
ε

R

R
εεIRεIRε

ab

cb
abcb ==⇒==  

    b) The value of the galvanometer’s resistance is unimportant since no current flows 

through it. 

    c) ( ) .V34.3
m000.1

m365.0
V15.912 ===

l

x
εε  

 

 



26.32: Two voltmeters with different resistances are connected in series across a 120-V 

line. So the current flowing is .A1020.1
10100

V120 3

3

−×=
Ω×

==
totalR

V
I  But the current 

required for full-scale deflection for each voltmeter is: 

 ( ) .A1067.1
000,90

V150
andA0150.0

000,10

V150 3

k90)k10(

−
ΩΩ ×=

Ω
==

Ω
= fsdfsd II  

So the readings are: 

.V108
A1067.1

A1020.1
V150andV12

A0150.0

A1020.1
V150

3

3

kΩ90

3

kΩ10 =








×
×

==






 ×
= −

−−

VV  

 

 

26.33: A half-scale reading occurs with .600 Ω=R  So the current through the 

galvanometer is half the full-scale current. 

( ) .2186000.15
2

A1060.3
V50.1

3

total Ω=⇒+Ω+Ω






 ×
=⇒=⇒

−

ss RRRIε  

 

 

26.34: a) When the wires are shorted, the full-scale deflection current is obtained: 

( )( ) .5430.65A1050.2V52.1 3 Ω=⇒+Ω×=⇒= − RRIRε total  

    b) If the resistance .mA88.1
5430.65

V52.1
:200 =

+Ω+Ω
==Ω=

xtotal

x
RR

V
IR  

    c) .608
V52.1

5430.65

V52.1
Ω−=⇒

+Ω+Ω
==

x

x

xtotal

x
I

R
RR

ε
I  

So: .1824608
A1025.6

V52.1
A1025.6

4

1
4

4 Ω=Ω−
×

=⇒×== −
−

xfsdx RII  

.608608
A1025.1

V52.1
A1025.1

2

1
3

3 Ω=Ω−
×

=⇒×== −
−

xfsdx RII  

.203608
A10875.1

V52.1
A10875.1

4

3
3

3 Ω=Ω−
×

=⇒×== −
−

xfsdx RII  

 

 

26.35: [ ] [ ]t
tQ

Q

I

Q

V

Q

I

V
RC =








=




=




=  

 

 



26.36: An uncharged capacitor is placed into a circuit. 

 a) At the instant the circuit is completed, there is no voltage over the capacitor, 

since it has no charge stored. 

    b) All the voltage of the battery is lost over the resistor, so .V125== εVR  

    c) There is no charge on the capacitor. 

    d) The current through the resistor is .A0167.0
7500

V125
=

Ω
==

totalR

ε
i  

    e) After a long time has passed: 

   The voltage over the capacitor balances the emf: .V125=cV   

   The voltage over the resister is zero. 

   The capacitor’s charge is C.105.75V)(125F)1060.4( 46 −− ×=×== cCvq  

   The current in the circuit is zero. 

 

 

26.37: a) .A1012.1
)F1055.4()1028.1(

C1055.6 4

106

8
−

−

−

×=
×Ω×

×
==

RC

q
i  

    b) .s1082.5)F1055.4()1028.1( 4106 −− ×=×Ω×== RCτ   

 

 

26.38:

 .F1049.8
))3/12((ln)1040.3(

s00.4

)/ln(

7

6

0

/

0

−− ×=
Ω×

==⇒=
vvR

τ
Cevv RCτ

 

 

 



26.39: a) The time constant :atSo.s1.11)F104.12()10895.0( 66 =×Ω×= −RC  

  .0)1(:s0 / =−== − RCteCεqt  

  

.C1070.2

)1()V0.60()F104.12()1(:s5

4

)s1.11/()s0.5(6/

−

−−−

×=

−×=−== eeCεqt RCt

 

  
.C1042.4

)1()V0.60()F104.12()1(:s10

4

)s1.11/()s0.10(6/

−

−−−

×=

−×=−== eeCεqt RCt

 

  
.C1021.6

)1()V0.60()F104.12()1(:s20

4

)s1.11/()s0.20(6/

−

−−−

×=

−×=−== eeCεqt RCt

 

  
.C1044.7

)1()V0.60()F104.12()1(:s100

4

)s1.11/()s100(6/

−

−−−

×=

−×=−== eeCεqt RCt

 

    b) The current at time t is given by: :atSo./ RCte
R

ε
i −=  

  .A1070.6
1095.8

V0.60
:s0 51.11/0

5

−− ×=
Ω×

== eit  

  .A1027.4
1095.8

V0.60
:s5 51.11/5

5

−− ×=
Ω×

== eit  

  .A1027.2
1095.8

V0.60
:s10 51.11/10

5

−− ×=
Ω×

== eit  

  .A1011.1
108.95

V60.0
:s20t 51.11/20

5

−− ×=
Ω×

== ei  

  A.1020.8
1095.8

V0.60
:s100 91.11/100

5

−− ×=
Ω×

== eit  

    c) Charge against time: 

 

 
 

Current against time: 

 



26.40: a) Originally, s.870.0== RCτ The combined capacitance of the two identical 

capacitors in series is given by 

  
2

;
2111

tot

tot

C
C

CCCC
==+=  

 The new time constant is thus .s435.0)(
2

s870.0

2
==CR  

    b) With the two capacitors in parallel the new total capacitane is simply 2 C. Thus the 

time constant is .s74.1)s870.0(2)2( ==CR  

 

 

26.41: 0=−− CR VVε  

 V48so,V72)0.80()A900.0(,V120 ==Ω=== CR VIRVε  

 )C192)V48()F1000.4( 6 µCVQ =×== −
 

 

 

26.42: a) C.1065.1)V0.28()F1090.5( 46 −− ×=×== CVQ  

    b) .
)/1ln(

1)1( //

QqC

t
R

Q

q
eeQq RCtRCt

−
−

=⇒−=⇒−= −−  

After .463
))165/1101(ln()F1090.5(

s103
:s103

6

3
3 Ω=

−×
×−

=×= −

−
− Rt  

    c) If the charge is to be 99% of final value: 

   

.s0126.0)01.0ln()F1090.5()463(

)/1ln()1(

6

/

=×Ω−=

−−=⇒−=

−

− QqRCte
Q

q RCt

 

 

 

26.43: a) The time constant .s0147.0)F1050.1()980( 5 =×Ω= −RC   

 

C.1033.1)1()V0.18()F1050.1()1(:s05.0 40147.0/010.05/ −−−− ×=−×=−== eeCεqt RCt
 

    b) A.1030.9
980

V0.18 30147.0/10.0/ −−− ×=
Ω

== ee
R

ε
i RCt  

       

V.89.8V11.9V0.18andV11.9)980()A1030.9( 3 =−==Ω×==⇒ −
CR VIRV  

    c) Once the switch is thrown, V.89.8== CR VV  

    d) C.1075.6)V89.8()F1050.1(:s01.0After 50147.0/01.05/

0

−−−− ×=×=== eeQqt RCt  

 

 



26.44: a) .A1.17
V240

W4100
===

V

P
I  So we need at lest 14-gauge wire (good up to 18 

A). 12 gauge is ok (good up to 25 A). 

    b) Ω===⇒= 14
W4100

)V240( 222

P

V
R

R

V
P  

    c) .c45kW)(4.1)hr1(/kWhr)c(11costhour,1in /kWhrc11At /=/=⇒/  

 

26.45: We want to trip a 20-A circuit breaker: 

A.20
V120

W900

V120

W1500
:W900With

V120V120

W1500
+==⇒+= IP

P
I  

 

26.46: The current gets split evenly between all the parallel bulbs. A single bulb will 

draw 26.7.
A0.75

A20
bulbsofNumberA0.75

V120

W90
=≤⇒===

V

P
I So you can attach 

26 bulbs safely. 

 

26.47: a) W.720V)(120A)0.6(A0.6
20

V120
===⇒=

Ω
== IVP

R

V
I   

    b) At ))C257()C(108.2(1(20)1(,C280 13

0 °°×+Ω=∆+=°= −−TαRRT  

W.419)V120()A49.3(A49.3
A34.4

V120

.4.34

==⇒===⇒

Ω=

P
R

V
I

 

 



26.48: a) 

 

.If

11

21

2

1

21

21
131eq

2

21
3

1

21

3eq
1

RR

R

RR

RR
RRRR

RR

RR
R

RR
RR

+
=









+
−=⇒=












+
+=








++=

−

 

    b) 
321

213

1

321

eq

)(
 

11

RRR

RRR

RRR
R

++
+

=







+

+
=

−

 

 ./)()()(If 2211321332111eq RRRRRRRRRRRRRR +=⇒+=++⇒=  

 

 

 

26.49: a) We wanted a total resistance ofpowerandΩ400of  W2.4  from a 

combination of individual resistors of rating.-powerW1.2andΩ400  

 

    b) The current is given by: In.A077.0400/W4.2/ =Ω== RPI  each leg half the 

current flows, so the power in each resistor in each resistor in each combination is the 

same: .W6.0)400()A039.0()2/( 22 =Ω== RIP  

 



26.50: a) First realize that the Cu and Ni cables are in parallel. 

 

CuNiCable

111

RRR
+=  

)(
/

/

22CuCuCu

2NiNiNi

abπ

L
ρALρR

πa

L
ρALρR

−
==

==
 

 

 

So: 
Lρ

abπ

Lρ

πa

R Cu

22

Ni

2

cable

)(1 −
+=  

        










Ω×
−

+
Ω×

=








 −
+=

−− m1072.1

2)m050.0()m100.0(

m108.7

)m050.0(

m20 8

2

8

2

Cu

22

Ni

2

π

ρ

ab

ρ

a

L

π

 

 Ω=Ω×= − µR 6.13106.13 6

Cable  

    b) 
2effeff

πb

L

A

L
ρR ρ==  

     

m1014.2

m20

)106.13()m10.0(

8

622

eff

Ω×=

Ω×
==

−

−π

L

Rπb
ρ

 

 



26.51: Let ,00.1 Ω=R the resistance of one wire. Each half of the wire has .2h RR =  

 

The equivalent resistance is ΩΩ==++ 25.1)500.0(252
2
5

hhhh RRRR  

 

26.52: a) The equivalent resistance of the two bulbs is .0.1 Ω  So the current is: 

A.2.2 isbulbeachthroughcurrenttheA4.4
80.00.1

V0.8
⇒=

Ω+Ω
==

totalR

V
I  

W9.9)V4.4()A2.2(V4.4)80.0()A4.4(V0.8 bulbbulb ===⇒=Ω−=−= IVPIrεV  

    b) If one bulb burns out, then 

 ,W3.16)0.2()A9.2(A9.2
80.00.2

V0.8 22 =Ω==⇒=
Ω+Ω

== RIP
R

V
I

total

 

so the remaining bulb is brighter than before. 

 

 

26.53: The maximum allowed power is when the total current is the maximum allowed 

value of A.3.94.2/W36/ =Ω== RPI Then half the current flows through the 

parallel resistors and the maximum power is: 

.W54)4.2()A9.3(
2

3

2

3
)2/()2/( 22222

max =Ω==++= RIRIRIRIP  

 



26.54: a) ;0.4
16

1

16

1

8

1
)16,16,8(

1

eq Ω=








Ω
+

Ω
+

Ω
=

−

R  

           .0.6
18

1

9

1
)18,9(

1

eq Ω=








Ω
+

Ω
=

−

R  

So the circuit is equivalent to the one shown below. Thus: 

Ω=








Ω+Ω
+

Ω+Ω
=

−

0.8
420

1

66

1
1

eqR  

 

    b) If the current through the Ω-8  resistor is 2.4 A, then the top branch current is 

A.4.8A2.4A2.4A.42)16,16,8(
2
1

2
1 =++=I But the bottom branch current is twice 

that of the top, since its resistance is half. Therefore the potential of point a relative to 

point V.58)00.6()A6.9()18,9(is eq −=Ω−=−= IRVx ax  

 



26.55: Circuit (a)  

toequivalentisnetworkThe

16.67resistanceequivalenthaveandparallelinareresistorsΩ50.0andΩ25.0The

26.09resistanceequivalenthaveandparallelinareresistorsΩ40.0andΩ 75.0 The

 

 

Ω=
Ω

+
Ω

= 7.18so
05.23

1

0.100

11
eq

eq

R
R

 

 Circuit (b) 

The 

Ω0.18resistanceequivalenthaveandparallelinareresistorsΩ45.0andΩ.030 . 

The network is equivalent to 

 

 

Ω=
Ω

+
Ω

= 5.7so
3.30

1

0.10

11
eq

eq

R
R

 

 



26.56: Recognize that the ohmmeter measures the equivalent parallel resistance, not just 

X. 

Ω=

Ω
+

Ω
+

Ω
+=

Ω

8.46

85

1

130

1

115

11

2.20

1

X

X  

 

26.57: .0561201)(512:loopleftTop 32232 =+−⇒=−−− IIIII  

.010301191012:loopBottom

.089901)(89:looprightTop

321213

31131

=−−+⇒=−+−−

=−−⇒=−+−

IIIIII

IIIII
 

 Solving these three equations for the currents yields: 

.A171.0andA,14.2,848.0 321 === IIAI  

 

26.58: .A0.20)8.1(3)8.1(724:loop Outside −=⇒=−−− εε II  

.V6.80)0.2(2)8.1(7:loopRight =⇒=−−− εε  

 

 

26.59: .04660)(421420:loopLeft 21121 =+−⇒=−+−− IIIII

.094360)(4536:loopRight 21122 =−+⇒=−−− IIIII  

Solving these two equations for the currents yields: 

A.11.1and,A32.6,A21.5 1245221 =−===== ΩΩΩ IIIIIII   

 



26.60: a) Using the currents as defined on the circuit diagram below we obtain three 

equations to solve for the currents: 

 

.043

0)(2)(:loopBottom

.032

0)(2:loopTop

.1423

0)(214:loopLeft

21

22121

21

121

21

211

=−+−⇒

=−−++−−

=++−⇒

=++−−

=−⇒

=−−−

III

IIIIII

III

IIII

II

III

 

Solving these equations for the currents we find: 

A.0.2A;0.6;A0.10
31 2R1battery ====== RIIIIII  

So the other currents are: 

A.0.6A;0.4A;0.4 21211 542
=+−==−==−= IIIIIIIIII RRR  

 .40.1b)
A0.10

V0.14

eq Ω===
I
VR  

 



26.61: a) Going around the complete loop, we have: 

V.22.0

)112()A44.0(V0.10V0.12

.A44.00)0.9(V0.8V0.12

+=

Ω+Ω+Ω−−=−=⇒

=⇒=Ω−−=−

∑ ∑
∑∑

IRεV

IIIRε

ab  

    b) If now the points a and b are connected by a wire, the circuit becomes equivalent to 

the diagram shown below. The two loop equations for currents are (leaving out 

the units): 

  5.00441012 1221 −=⇒=+−− IIII  

and 

A.464.0

05.255)24(2

0)(54254810

1

111

21232

=⇒

=+−−−−⇒

=+−−=−−−

I

III

IIIII

 

Thus the current through the 12-V battery is 0.464 A. 

 
 



26.62: a) First do series/parallel reduction: 

 

Now apply Kirchhoff’s laws and solve for .ε  

A25.4)A25.2(A2A2

A25.2

0)20(V5)A2)(20(:0

121

2

2adefa

=−−=→=+

−=

=Ω−−Ω−=∆

III

I

IV

 

reversed. beshouldpolarityV;109

0)A25.2()20(A)25.4()15(:0abcdefa

−=

=−Ω−+Ω=∆

ε

εV
 

    b) Parallel branch has a resistance10Ω . 

V20)A2()10(par =Ω==∆ RIV  

Current in upper part: A
3
2

30

V20 === Ω
∆
R
VI  

s5.13

J60)10(A
3

2
2

2

=

=Ω








=→=

t

t

URtIUPt

 



26.63: 

 

V7.12;V706.12

V0.12)0.10(1

=−=−=−

=+Ω+

dcbadc

cd

VVVVVV

VIV
 

 

26.64: First recognize that if the 40 Ω  resistor is safe, all the other resistors are also safe. 

A0.158I

W1)40(22

=

=Ω→= IPRI
 

Now use series / parallel reduction to simplify the circuit. The upper parallel branch is 

6.38 Ω  and the lower one is 25 Ω . The series sum is now Ω126 . Ohm’s law gives 

V19.9A)158.0()126( =Ω=ε  

 

26.65:  The 20.0-Ω  and 30.0-Ω  resistors are in parallel and have equivalent resistance 

12.0 Ω . The two resistors R are in parallel and have equivalent resistance R/2. The 

circuit is equivalent to  

 

     



26.66: For three identical resistors in series, .
3

2

R

V
Ps =  If they are now in parallel over the 

same voltage, W.243)W27(99
3

9

3

22

eq

2

====== sp P
R

V

R

V

R

V
P  

 

 

26.67: 1

2

11

2

1 so PεRRεP ==  

2

2

22

2

2 so PεRRεP ==  

 

    a) When the resistors are connected in parallel to the emf, the voltage across each 

resistor is ε  and the power dissipated by each resistor is the same as if only the one 

resistor were connected. 21tot PPP +=  

    b) When the resistors are connected in series the equivalent resistance is 

21eq RRR +=  

21

21

2

2

1

2

2

21

2

tot
PP

PP

PPRR
p

+
=

+
=

+
=

εε
εε

 

 

 



26.68: a) Ignoring the capacitor for the moment, the equivalent resistance of the two 

parallel resistors is 

Ω=
Ω

=
Ω

+
Ω

= 00.2;
00.6

3

00.3

1

00.6

11
eq

eq

R
R

 

In the absence of the capacitor, the total current in the circuit (the current through the 

Ω00.8  resistor) would be 

A20.4
2.008.00

V0.42
=

Ω+Ω
==

R
i

ε
 

of which 32 , or 2.80 A, would go through the Ω00.3  resistor and 31 , or 1.40 A, 

would go through the Ω00.6  resistor. Since the current through the capacitor is given by 

,RCte
R

V
i −=  

at the instant 0=t  the circuit behaves as through the capacitor were not present, so the 

currents through the various resistors are as calculated above. 

    b) Once the capacitor is fully charged, no current flows through that part of the circuit. 

The Ω00.8  and the Ω00.6  resistors are now in series, and the current through them is 

A.3.00)6.00(8.00/V)0.42( =Ω+Ω== Ri ε  The voltage drop across both the Ω00.6  

resistor and the capacitor is thus V.0.18)00.6()A00.3( =Ω== iRV  (There is no 

current through the Ω00.3  resistor and so no voltage drop across it.) The change on the 

capacitor is 

 C107.2V)(18.0farad)1000.4( 56 −− ×=×== CVQ  

 

 
26.69: a) When the switch is open, only the outer resistances have current through them. 

So the equivalent resistance of them is: 

V.0.12)00.6(A00.8
2

1
)00.3(A00.8

2

1

A00.8
4.50

V0.36
50.4

63

1

36

1

eq

1
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−=Ω






−Ω






=⇒

=
Ω

==⇒Ω=








Ω+Ω
+

Ω+Ω
=

−

abV

R

V
IR

 

    b) If the switch is closed, the circuit geometry and resistance ratios become identical 

to that of Problem 26.60 and the same analysis can be carried out. However, we can also 

use symmetry to infer the following: 

.and, 33
1

switch33
2

6 ΩΩΩ == IIII  From the left loop as in Problem 26.60: 

.A71.1
3

1
A14.50)3()6(

3

2
V36 3switch333 ==⇒=⇒=Ω−Ω







− ΩΩΩΩ IIIII  

 (c) .20.4
A8.57

V0.36
A57.8

3

5

3

2

battery

eq333battery Ω==⇒==+= ΩΩΩ
I

RIIII
ε

 

 

 



26.70: a) With an open switch: V,0.18== εabV  since equilibrium has been reached. 

    b) Point “a” is at a higher potential since it is directly connected to the positive 

terminal of the battery. 

 

    c) When the switch is closed: 

 .V00.6)00.3()A00.2(A00.2)00.300.6(V0.18 =Ω=⇒=⇒Ω+Ω= bVII  

    d) Initially the capacitor’s charges were: 

.C10.081V)0.18()F1000.6(

.C105.40V)0.18()F1000.3(

46

6

56

3

−−

−−

×=×==

×=×==

CVQ

CVQ
 

After the switch is closed: 

  
.C107.20V).06V0.18()F1000.6(

.C101.80V)12.0V0.18()F1000.3(

56

6

56

3

−−

−−

×=−×==

×=−×==

CVQ

CVQ
 

So both capacitors lose C.1060.3 5−×  

 

 

26.71: a) With an open switch: 

 .C10.603V)0.18()F1000.2(
56

eq3

−− ×=×== VCQ  

 Also, there is a current in the left branch: 

  A.00.2
00.300.6

V0.18
=

Ω+Ω
=I  

 So, V.6.00)(6.0A)0.2(
F100.6

C106.3
6

5

6

6

66 −=Ω−
×
×

=−=−= −

−

ΩΩ IR
C

Q
VVV

µF

Fab µ  

 b) Point “b” is at the higher potential. 

 c) If the switch is closed: 

  V.6.00)(3.00A)00.2( =Ω== ab VV  

 d) New charges are: 

  

C.10.603C)107.20(C1060.3

C.101.80C)10(1.80C1060.3

.C1002.7V)0.12)(F1000.6(

.C10.801V)0.6()F1000.3(

555

6

555

3

56

6

56

3

−−−

−−−

−−

−−

×+=×−−×−=∆⇒

×+=×−×+=∆⇒

×−=−×==

×=×==

Q

Q

CVQ

CVQ

 

 So the total charge flowing through the switch is C.1040.5 5−×  

 

 



26.72: The current for full-scale deflection is 0.02 A. From the circuit we can derive 

three equations: 

 (i) A)02.0(0.48)A02.0A100.0)(( 321 Ω=−++ RRR  

          .0.12321 Ω=++⇒ RRR  

    (ii) A)02.0)((48.0A)0.02A00.1)(( 321 RRR +Ω=−+  

.980.00204.0 321 Ω=−+⇒ RRR  

    (iii) A)02.0)((48.0A)0.02A0.10( 321 RRR ++Ω=−  

.096.0002.0002.0 321 Ω=−−⇒ RRR  

     From (i) and (ii) .8.103 Ω=⇒ R  

                From (ii) and (iii) .12.0soAnd.08.1 12 Ω=⇒Ω= RR  

 

 

26.73: From the 3-V range: 

 .30002960V00.3)0.40)(A1000.1( 11

3 Ω=⇒Ω=⇒=+Ω× −
overallRRR  

From the 15-V range: 

.1500012000V0.15)0.40)(A1000.1( 221

3 Ω=⇒Ω=⇒=++Ω× −
overallRRRR  

From the 150-V range: 

Ω=⇒=+++Ω× − 000,135V150)0.40)(A1000.1( 2321

3 RRRR  

    .k150 Ω=⇒ overallR  

26.74:  a) .k140
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kV400.0
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3
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Ω
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Ω
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RIV
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 b) ,1000.5 6 Ω×=RVIf  then we carry out the same calculations as above to find 

.V263A1037.1k292 k200

3

eq =⇒×=⇒Ω= Ω
− VIR  

 c) V.266A1033.1k300findwethen,If k200

3

eq =⇒×=⇒Ω=∞= Ω
− VIRVR  

 

 

26.75: .V68
)k30(

k30)V110(
V100

)k30(

V110
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+Ω
Ω

−=⇒
+Ω

=
R

V
R

I    

   .k5.18k30)V110()k30)(V68( Ω=⇒Ω=+Ω⇒ RR  

 

 



26.76: a) .AI
V

A RRIRIRV −=⇒+=  The true resistance R is always less than the 

reading because in the circuit the ammeter’s resistance causes the current to be less then 

it should. Thus the smaller current requires the resistance R to be calculated larger than it 

should be. 

 b) .
VV

V

V RVI
V

VIR

VR

R
V

R
V RI −− ==⇒+=  Now the current measured is greater than that 

through the resistor, so RIVR =  is always greater than .IV  

 c) (a): .)( 222

AA RIIVRIVIRIP −=−==  

    (b): .)( 22

VV RVIVRVIVRVP −=−==  

 

 

26.77: a) When the bridge is balanced, no current flows through the galvanometer: 
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 (b)   .1897
00.15

)48.33)(50.8(
Ω=

Ω
ΩΩ

=X  

 

26.78: In order for the second galvanometer to give the same full-scale deflection and to 

have the same resistance as the first, we need two additional resistances as shown below. 

So: 

  .m4.91)mA496.1()0.38)(A6.3( 11 Ω=⇒=Ω RRµ  

And for the total resistance to be 65 :Ω  

.9.64
0914.0
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26.79: a) A.111.0
)589224(

90
=

Ω+Ω
=

V
I  

        
V.4.65)589)(A111.0(

.V9.24)224)(A111.0(
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224
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 b) ΩΩ−
Ω

−=
++Ω

= 5892241
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IRVI
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224
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   .38748.211
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
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−

V
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 c) If the voltmeter is connected over the Ω-589  resistor, then: 

 

.V4.62)589)(A106.0(A106.0
)1(

A122.0

5893874alsoA122.0
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V90
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1
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1
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 d) No. From the equation in part (b) one can see that any voltmeter with finite 

resistance VR  placed in parallel with any other resistance will always decrease the 

measured voltage. 

 

26.80: a) (i) W3380
26.4

)V120( 22

=
Ω

==
R

V
PR  (ii) .0

)(

2

1 2

====
C

iq

dt

qd

Cdt

dU
PC  

    (iii) W.3380
26.4

V120
)V120( =

Ω
== IP εε  

 b) After a long time, .0,0,00 ===⇒= εPPPi CR  

  



26.81: a) If the given capacitor was fully charged for the given emf, == CVQmax  

.C1012.6)V180)(F104.3( 46 −− ×=×  Since it has more charge than this after it was 

connected, this tells us the capacitor is discharging and so the current must be flowing 

toward the negative plate. The capacitor started with more charge than was “allowed” for 

the given emf. Let 

f

RCt

ff QeQQtQtQtQQtQ +−==∞=== −)()(,allFor.)(and)0( 00  

fromandC1015.8)(;timesomeatgivenareWe 4−×=== TtQTtQ  
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.)()(atcurrenttheSo.)(
))(()(

0

0
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QTQRCT
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QQ

f

RCT

f

ff eTIisTtQeQQ
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plate).negativethe(towardA1024.8)(Thus 3

)1040.3)(1025.7(
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63

44 −

×Ω×

×+×− ×−== −

−−

F
TI  

b) As time goes on, the capacitor will discharge to C1012.6 4−×  as calculated 

above. 

 

 

26.82: For a charged capacitor, connected into a circuit: 

 C.1012.3)F1055.8)(k88.5)(A620.0( 610
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−− ×=×Ω==⇒= RCIQ
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Q
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26.83: ⇒Ω×=
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26.84: a) J.10.7
)F1062.4(2
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 b) .W3616
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26.85: a) We will say that a capacitor is discharged if its charge is less than that 

of one electron, The time this takes is then given by: 

 
,s36.19)C106.1C100.7(ln)F102.9)(107.6(

)(ln

19675

00

=×××Ω×=⇒

=⇒=
−−−

−

t

eQRCteQq RCt

 

or 31.4 time constants. 

 b) As shown in (a), ),(ln 0 qQt τ=  and so the number of time constants 

required to discharge the capacitor is independent of ,and CR  and depends only on 

the initial charge. 

 

 

26.86: a) The equivalent capacitance and time constant are: 

.s1020.1)F00.2)(00.6(F00.2
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f eCeQqt
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26.87: a) ∫∫∫ ===== −
∞∞

.)1( 22
2

00

CCdte
R

dtIdtPE RCt

total εε
ε

εε  

 b) .
2

1 2

0

2
2
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0

Cdte
R

dtRidtPE
RCt

RR ε
ε

==== ∫∫∫
∞

−
∞∞

 

 c) .
2

1

22

2
22

0

Rtotal EEC
CV

C

Q
U −==== ε  

 d) One half of the energy is stored in the capacitor, regardless of the sizes of the 

resistor. 

 

26.88: dte
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26.89: a) Using Kirchhoff’s Rules on the circuit we find: 

  Left loop: .021014014705521014092 2121 =−−⇒=+−− IIII  

  Right loop:    .0352101120552103557 3223 =−−⇒=+−− IIII  

  Currents:        .0321 =+−⇒ III  

Solving for the three currents we have: 

A,300.01 =I  A,500.02 =I  A.200.03 =I  

 b) Leaving only the 92-V battery in the circuit: 

   Left loop: .021014092 21 =−− II  

   Right loop:        .021035 23 =−− II  

   Currents:             .0321 =+− III  

 

 

Solving for the three currents: 

 A,541.01 =I  A,077.02 =I  .A464.03 −=I  

 

c) Leaving only the 57-V battery in the circuit: 

Left loop:        .0210140 21 =+ II   

Right loop: .02103557 23 =−− II  

Currents:            .0321 =+− III  

Solving for the three currents: 

 A,287.01 −=I  ,A192.02 =I  A.480.03 =I  

 d) Leaving only the 55-V battery in the circuit: 

   Left loop: .021014055 21 =−− II  

   Right loop:  .02103555 23 =−− II  

   Currents:            .0321 =+− III  

Solving for the three currents: 

A,046.01 =I  ,A231.02 =I  A.185.03 =I  

 e) If we sum the currents from the previous three parts we find: 

A,300.01 =I  A,500.02 =I  A,200.03 =I  just as in part (a). 

f) Changing the 57-V battery for an 80-V battery just affects the calculation in part 

(c). It changes to: 

Left loop:       .0210140 21 =+ II  

Right loop: .02103580 23 =−− II  

Currents:           .0321 =+− III  

Solving for the three currents: 

,A403.01 −=I  A,269.02 =I  A.672.03 =I  

So the total current for the full circuit is the sum of (b), (d) and (f) above: 

A,184.01 =I  A,576.02 =I  A.392.03 =I  

 



26.90: a) Fully charged: 

.C1000.1)V1000)(F100.10( 812 −− ×=×== CVQ  

 b) .1.1where,)(0 CCe
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V
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
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 c) We need a resistance such that the current will be greater than 1 Aµ  for longer 

than .s200 µ  

  )F121011(

s4100.2

)F100.1(1.1

C100.1
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1
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8
6 −×

−×−
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−
−










×
×

−=×=⇒ Re
R

si µ  

  .0108.1ln3.18)9.90(
1

A100.1 7)108.1(6 7

=×−−⇒=×⇒ Ω×−− RRRe
R

R
 

Solving for R  numerically we find .1001.71015.7 76 Ω×≤≤Ω× R  

If the resistance is too small, then the capacitor discharges too quickly, and if the 

resistance is too large, the current is not large enough. 

26.91: We can re-draw the circuit as shown below: 
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26.92: 

 

Let current .atexitandatenter baI  At a  there are three equivalent branches, so 

current is 3I  in each. At the next junction point there are two equivalent branches 

so each gets current .6I  Then at b  there are three equivalent branches with current 

3I  in each. The voltage drop from ba to  then is ( ) ( ) ( ) .
6
5

363
IRRRRV III =++=  

This must be the same as .
6

5
so, eqeq RRIRV ==  

 

 



26.93: a) The circuit can be re-drawn as follows: 

 

  Then 
1/2

1

2 eq1eq1

eq

+
=

+
=

RR
V

RR

R
VV ababcd  and 

T

T

RR

RR
R

+
=

2

2
eq . 

  But 
β

β
+

=⇒=
+

=
1

12)(2

eq

1

2

21
abcd

T

T VV
R

R

RR

RRR
. 
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 If )31(2 111

2

1121 +=++=⇒= RRRRRRRR T  and 73.2
31

)32(2
=

+

+
=β . So, for 

the nth segment to have 1% of the original voltage, we need: 

04 005.0:401.0
)73.21(

1

)1(

1
VVn

nn
==⇒≤

+
=

+ β
. 

 

c) 21

2

11 2 RRRRRT ++=  

      
.100.4

)100.8()102.3(

)100.8102.3()6400(2

.102.3)100.8()6400(2)6400(6400

3

86

86

682

−×=
Ω×Ω×

Ω×+Ω×Ω
=⇒

Ω×=Ω×Ω+Ω+Ω=⇒

β

RT

 

  

d) Along a length of 2.0 mm of axon, there are 2000 segments each 1.0 mµ  long. The 

voltage therefore attenuates by: 

.104.3
)100.41(

1

)1(

4

20003

0

2000

2000

0

2000

−
−

×=
×+

=⇒
+

=
V

VV
V

β
 

 

e) If Ω×=⇒Ω×= 812

2 101.2103.3 TRR  and .102.6 5−×=β  

.88.0
)102.61(

1
20005

0

2000 =
×+

=⇒
−V

V
 

 
 



Capítulo 27 



27.1: a) )ˆˆT)()(1.40sm103.85C)(1024.1(
48

ijBvF ××−×−×= −
rrr

q  

     .ˆN)1068.6( 4
kF

−×−=⇒
r

 

 b) BvF ×=
r

q  

ˆ)(sm1019.4()ˆˆ)(sm103.85T)[(C)(1.401024.1( 448 ikjF ××+××−×−=⇒ −

.ˆN)1027.7(ˆN)1068.6( 44 jiF −− ×+×=⇒  

 

 

27.2: Need a force from the magnetic field to balance the downward gravitational force. 
Its magnitude is: 

  T.91.1
)sm10C)(4.001050.2(

)smkg)(9.801095.1(
48

24

=
××

×
==⇒=

−

−

qv

mg
BmgqvB  

The right-hand rule requires the magnetic field to be to the east, since the velocity 

is northward, the charge is negative, and the force is upwards. 

 

27.3: By the right-hand rule, the charge is positive. 

 

 
 

 

27.4: 
m

q
qm

Bv
aBvaF

×
=⇒×==  

 .ˆ)sm330.0(
kg1081.1

)ˆˆT)()(1.63sm10C)(3.01022.1( 2

3

48

k
ij

a −=
×

×××
=⇒

−

−

 

  



27.5: See figure on next page. Let ,0 qvBF = then: 

     0FFa =  in the k̂−  direction 

     0FFb =  in the ĵ+  direction 

     ,0=cF  since B and velocity are parallel 

     
o45sin0FFd =  in the ĵ−  direction 

     0FFe =  in the )ˆˆ( kj +−  direction 

 
 

 
27.6: a) The smallest possible acceleration is zero, when the motion is parallel to the 

magnetic field. The greatest acceleration is when the velocity and magnetic field are at 

right angles: 

 .sm1025.3
kg)10(9.11

T)10)(7.4sm10C)(2.50106.1( 216

31

2619

×=
×

×××
==

−

−−

m

qvB
a  

 b) If  .5.1425.0sin
sin

)sm1025.3(
4

1 216 o=⇒=⇒=×= φφ
φ

m

qvB
a  

 

27.7: 
o60sin)T10C)(3.510(1.6

N1060.4

sin
sin

319-

15

−

−

××
×

==⇒=
φ

φ
Bq

F
vBvqF  

    .sm1049.9 6×=  

 

 



27.8: a) )].ˆ()ˆ([)]ˆˆ()ˆˆ()ˆˆ([ ijkkkjkiBvF yxzzyxz vvqBvvvqBq +−=×+×+×=×=  

Set this equal to the given value of F to obtain: 

 

  sm106
T)1.25C)(105.60(

N)1040.7(
9

7

−=
−×−−

×
=

−
=

−

−

z

y

x
qB

F
v  

  .sm6.48
T)1.25C)(105.60(

N)1040.3(
9

7

−=
−×−

×−
==

−

−

z

x

y
qB

F
v  

 

 b) The value of zv is indeterminate. 

 c) .90;0 o==+
−

=++=⋅ θy

z

x
x

z

y

zzyyxx F
qB

F
F

qB

F
FvFvFvFv  

 

 

27.9: sm1080.3ˆ, 3×−==×= yy vwithvq jvBvF   

 ,0N,1060.7 3 =×+= −
yx FF and N1020.5 3−×−=zF  

 zyyzzyx BqvBvBvqF =−= )(  

 T0.256)]sm103.80C)(10([7.80N)1060.7( 363 −=×−××== −−
yxz qvFB  

 ,0)( =−= zxxzy BvBvqF  which is consistent with F as given in the problem. No 

force component along the direction of the velocity. 

 xyxyyxz BqvBvBvqF −=−= )(  

 T175.0−=−= yzx qvFB  

 b) yB is not determined. No force due to this component of B along ;v  measurement 

of the force tells us nothing about .yB  

 c) +×+−=++=⋅ − N)107.60T)(175.0( 3

zzyyxx FBFBFBFB  

N)3105.20T)(0.256( −×−−  

 BFB ;0=⋅ and F are perpendicular (angle is )90o  

 

 



27.10: a) The total flux must be zero, so the flux through the remaining surfaces must be 

120.0− Wb. 

 b) The shape of the surface is unimportant, just that it is closed. 

 

 c) 

 

 

 

27.11: a) 32 1005.3m)(0.065T)230.0( −×==⋅=Φ πB AB Wb. 

 b) 32 1083.11.53cosm)(0.065T)230.0( −×=°=⋅=Φ πB AB Wb. 

 c) 0=Φ B since .AB ⊥  

 

 

27.12: a) .0)( =⋅=Φ ABabcdB  

 b) 0.0115m)300.0(m)300.0)(T128.0()( −=−=⋅=Φ ABbefcB  Wb. 

 c) 0.0115m)m)(0.300T)(0.500128.0(
5

3
cos)( +===⋅=Φ φBAaefdB AB Wb. 

 d) The net flux through the rest of the surfaces is zero since they are parallel to the x-

axis so the total flux is the sum of all parts above, which is zero. 

 

 

27.13: a) jB ˆ)][( 2yγ−β= and we can calculate the flux through each surface. Note that 

there is no flux through any surfaces parallel to the y-axis. Thus, the total flux through the 

closed surface is: 

])2)m300.0)(2T/m(2.00T[0.3000)]T300.0(([)( −+−−=⋅=Φ ABabeB  

m)m)(0.300400.0(
2

1
×   

    0108.0−= Wb. 

 

 b) The student’s claim is implausible since it would require the existence of a 

magnetic monopole to result in a net non-zero flux through the closed surface. 

 



27.14: a) T)C)(1.6510m)(6.41068.4( 193 −− ××==






== RqB
m

RqB
mmvp  

  .smkg1094.4 21−×=  

 b) .smkg102.31T)C)(1.65104.6()m1068.4( 22319232 −−− ×=××=== qBRRpL  

 

 

27.15: a) T.1061.1
)m0500.0)(C10(1.60

)sm10kg)(1.411011.9( 4

19

631
−

−

−

×=
×

××
==

Rq

mv
B  

The direction of the magnetic field is into the page (the charge is negative). 

 b) The time to complete half a circle is just the distance traveled divided by the 

velocity: 

  s.1011.1
sm101.41

m)0500.0( 7

6

−×=
×

===
π

v

Rπ

v

D
t  

 

 

27.16: a) T294.0
m)C)(0.050010 (1.60

)sm10kg)(1.411067.1(
19

627

=
×

××
==

−

−

qR

mv
B  

The direction of the magnetic field is out of the page (the charge is positive). 

 b) The time to complete half a circle is unchanged: 

    s.1011.1 7−×=t  

 

 

27.17: 2211 UKUK +=+  

 ,021 == KU so ;21 UK =  rkemv 22

2

1
=  

 sm102.1
m)10kg)(1.010(3.34

2
C)10602.1(

2 7

1527

19 ×=
××

×==
−−

− k

mr

k
ev  

 b) aF m=∑ gives rmvqvB 2=  

 T10.0
m)C)(2.5010(1.602

m/s)10kg)(1.21034.3(
19

727

=
×

××
==

−

−

qr

mv
B   

 

 



27.18: a) θsinqvBF =  

 
°×

×
== −

−

90sin)sm000C)(500,108(1.60

N1000320.0

sin 19

9

θqv

F
B  

 T.00.5=B If the angleθ  is less than ,90o
 a larger field is needed to produce the 

same force. The direction of the field must be toward the south so that Bv × can be 

downward. 

 b) θqvBF sin=  

°×
×

== −

−

90sinT)C)(2.1010(1.60

N1060.4

sin 19

12

θqB

F
v  

 .sm1037.1 7×=v If θ  is less than ,90o the speed would have to be larger to have the 

same force. The force is upward, so Bv × must be downward since the electron is 

negative, so the velocity must be toward the south. 

 

 

27.19: C106.408C)10602.1)(1000.4( 11198 −− ×=×−×=q  

 speed at bottom of shaft: m/s5.492;2

2
1 === gyvmgymv  

 v  is downward and B is west, so Bv × is north. Since F,0<q is south. 

 N1093.790sinT))(0.250smC)(49.510408.6(sin
1011 −− ×=°×== θqvBF  

 

 

27.20: (a) 
qB

mv
R =  

  
kg)1067.1(12

m)T)(C)(0.2501060.1(3
27

2
0.95019

−

−

×

×
==

m

qBR
v  

  sm1084.2 6×=v  

 Since Bv
rr

× is to the left but the charges are bent to the right, they must be 

negative. 

 b) N1096.1)smkg)(9.801067.1(12 25227

grav

−− ×=×== mgF  

     T))(0.250sm10C)(2.84106.1(3
619

magnetic ××== −
qvBF  

                  N1041.3 13−×=  

 Since grav,

12

magn 10 FF ×≈  we can safely neglect gravity. 

 c) The speed does not change since the magnetic force is perpendicular to the velocity 

and therefore does not do work on the particles. 
 

 



27.21: a) .sm1034.8
kg)10(3.34

T)m)(2.5010C)(6.961060.1( 5

27

319

×=
×

××
==

−

−−

m

qRB
v  

 b) s.1062.2
sm108.34

m)1096.6( 8

5

3
−

−

×=
×
×

===
ππ

v

R

v

D
t   

 c) V.7260
C)1060.1(2

)sm10kg)(8.341034.3(

22

1
19

25272
2 =

×

××
==⇒=

−

−

q

mv
VqVmv  

 

27.22: m.1082.1
T)C)(0.087710(1.60

)sm10kg)(2.81011.9( 4

19

631
−

−

−

×=
×

××
==

qB

mv
R  

 

27.23: a) T.107
C)10(1.60

Hz)10(3.00kg)21011.9(2
19

1231

=
×

××
== −

−
mπ

q

πfm
B  

This is about 2.4 times the greatest magnitude yet obtained on earth. 

 b) Protons have a greater mass than the electrons, so a greater magnetic field would be 

required to accelerate them with the same frequency, so there would be no advantage in 

using them. 

 

 

27.24: The initial velocity is all in the y-direction, and we want the pitch to equal the 

radius of curvature 

But  

.0.81tan2
2

.
22

.

o=⇒==⇒=⇒

==

===⇒

θθπ
v

v

qB

mv

qB

πmv

qB

πmπ
T

R
qB

mv
Tvd

x

yyx

y

xx

ω
 

 

 

27.25: a) The radius of the path is unaffected, but the pitch of the helix varies with time 

as the proton is accelerated in the x-direction. 

 

 b) ,2 s,1031.1
T)C)(0.50010(1.60

kg)1067.1(222 7

19

27

Tt
π

qB

πm

ω

π
T =×=

×
×

=== −
−

−

and 

 .sm1092.1
kg101.67

)mV10C)(2.00106.1( 212

27

419

×=
×

××
===

−

−

m

qE

m

F
ax  

2

s)1056.6)(sm10(1.92
s)10)(6.56sm105.1(

2

1 8212
852

0

−
− ××

+××=+= tatvd xxx

  m.014.0=⇒ xd  

 

 



27.26: .sm1079.7
kg)10(1.16

V)C)(220106.1(22

2

1 4

26

19
2 ×=

×

×
==⇒=

−

−

m

qV
vqVmv  

 m.1081.7
T)C)(0.72310(1.60

)sm10kg)(7.791016.1( 3

19

426
−

−

−

×=
×

××
==⇒

qB

mv
R  

 

 

27.27: 
kg)10(9.11

V)10(2.0C)106.1(22

2

1
31

319
2

−

−

×

××
=

∆
=⇒∆=

m

Vq
vVqmv  

  .sm1065.2 7×=  

  T.1038.8
m)C)(0.18010(1.60

)sm10kg)(2.651011.9( 4

19

731
−

−

−

×=
×

××
==⇒

Rq

mv
B  

27.28: a) .sm103.38T)1062.4()mV1056.1( 634 ×=××== −BEv  

 

 b) 

 

 c) 
T)10C)(4.6210(1.60

)sm10kg)(3.381011.9(
319

631

−−

−

××

××
==

Bq

mv
R  

 m.1017.4 3−×=⇒ R  

 s.1074.7
)sm10(3.38

m)1017.4(222 9

6

3
−

−

×=
×

×
===

πππ
v

R

Bq

m
T  

 

27.29: a) EB FF =  so ;EqvBq =  T10.0== vEB  

 Forces balance for either sign of .q  

 b) dVE =  so dBVBEv ==  

 smallest :v  

 largest ,V smallest ,B sm101.2
T)180.0(m)0325.0(

V120 4

min ×==v  

 largest :v   

 smallest ,V largest sm102.3
T)m)(0.054(0.0325

V560
, 5

min ×==vB  

 

 



27.30: To pass undeflected in both cases, .CN7898T))(1.35sm1085.5( 3 =×== vBE

 a) If C,10640.0 9−×=q  the electric field direction is given by ,ˆ))ˆ(ˆ( ikj =−×−  

since it must point in the opposite direction to the magnetic force. 

 b) If ,C10320.0 9−×−=q  the electric field direction is given by ,ˆ))ˆ()ˆ(( ikj =−×−  

since it must point in the same direction as the magnetic force, which has swapped from 
part (a). The electric force will now point opposite to the magnetic force for this negative 

charge using .EF qe =  

 

 

27.31: 
)mV1012.1(

)T540.0)(C1060.1)(m310.0(
5

2192

2 ×

×
==⇒==

−

E

RqB
m

qB

mE

qB

mv
R  

 kg1029.1 25−×=  

 

.unitsmassatomic78
kg1066.1

kg1029.1
)amu(

27

25

=
×

×
=⇒

−

−

m  

27.32: a) .mV1018.1)T650.0)(sm1082.1( 66 ×=×== vBE  

 b) .kV14.6)m1020.5)(mV1018.1( 36 =××==⇒= −EdVdVE  

 
 

27.33: a) For minimum magnitude, the angle should be adjusted so that )(B  is parallel 

to the ground, thus perpendicular to the current. To counter gravity, ,mgILB =  so 

.
IL

mg
B =  

 b) We want the magnetic force to point up. With a northward current, a westward 

B field will accomplish this. 

 

27.34: a) ,N1006.7)T588.0()m0100.0()A20.1( 3−×=== IlbF  and by the righthand 

rule, the easterly magnetic field results in a southerly force. 
 b) If the field is southerly, then the force is to the west, and of the same magnitude as 

part (a), .N1006.7 3−×=F  

 c) If the field is °30  south of west, the force is °30  west of north ( °90  

counterclockwise from the field) and still of the same magnitude, N.107.60 6−×=F   

 

 

27.35: A.9.7
T)(0.067m)(0.200

N0.13
===

lB

F
I  

 

 

27.36: N. 0.297T) m)(0.550 A)(0.050 (10.8 === IlBF  

 

 



27.37: The wire lies on the x-axis and the force on 1 cm of it is 

 a) .ˆN)(0.023)ˆˆT)(.650m)(A)(0.0103.50( kjiBlF +=×−−=×=
→→→

I  

 b) .ˆN)(0.020)ˆˆT)(0.56m)(A)(0.0103.50( jkiBlF +=×+−=×=
→→→

I  

 c) .0)ˆˆT)(0.31m)(A)(0.0103.50( =×−−=×=
→→→

iiBlF I  

 d) .ˆ)N108.9()ˆˆT)(0.28m)(A)(0.0103.50( 3 jkiBlF −
→→→

×−=×−−=×= I  

 e) )]ˆˆ(T0.36)ˆˆ(Tm)[0.74A)(0.0103.50( kijiBlF ×−×−=×=
→→→

I  

 .ˆN)(0.013ˆN)(0.026 jk −−=  

 

 

27.38:     
→→→

×= BlF I  

Between the poles of the magnet, the magnetic field points to the right. Using the 

fingertips of your right hand, rotate the current vector by °90  into the direction of the 

magnetic field vector. Your thumb points downward–which is the direction of the 

magnetic force. 

 

27.39: a) mgFI =  when bar is just ready to levitate. 

 

V817Ω)A)(25.0(32.67

A32.67
T)m)(0.450(0.500

)smkg)(9.80(0.750
2

===

====

IRε

lB

mg
Img,IlB

 

 

b) A408)0.2()V7.816(,0.2 =Ω==Ω= RIR ε  

2
sm113)(

N92

=−=

==

amgFa

IlBF

I

I
 

 

 



27.40: (a) The magnetic force on the bar must be upward so the current through it must 

be to the right. Therefore a must be the positive terminal. 

(b) For balance, mgF =magn  

A0.3500.5V175

sin

sin

=Ω==

=

=

RI

g

IlB
m

mgθIlB

ε

θ
 

 

     kg3.21
sm9.80

T)m)(1.50A)(0.600(35.0
2

==m   

 

 

27.41: a) The force on the straight section along the –x-axis is zero. 

For the half of the semicircle at negative x  the force is out of the page. For the 

half of the semicircle at positive x  the force is into the page. The net force on the 

semicircular section is zero. 

The force on the straight section that is perpendicular to the plane of the figure is 

in the –y-direction and has magnitude ILB.F =  

The total magnetic force on the conductor is ,ILB in the y− -direction. 

b) If the semicircular section is replaced by a straight section along the x -axis, then the 

magnetic force on that straight section would be zero, the same as it is for the semicircle. 

 

 

27.42: a) m.N104.71m)m)(0.080T)(0.050(0.19A)(6.2 3 ⋅×=== −IBAτ  

    b) .mA0.025m)m)(0.080A)(0.050(6.2 2⋅=== IAµ  

    c) Maximum torque will occur when the area is largest, which means a circle: 

m.N106.22m)041(0.04T)A)(0.19(6.2

.m0.041m)0.080m(0.05022

32

max ⋅×===⇒

=⇒+=
−πIBA

RπR

τ
 

 

 

27.43: a) The torque is maximum when the plane of loop is parallel to .B  

m.N0.13290sin)2m(0.08866T)A)(0.56(15)(2.7sin 2

max ⋅=°=⇒= π(IBA τφτ  

     b) The torque on the loop is 71% of the maximum when .450.71sin °=⇒= φφ  

 



27.44: (a) The force on each segment of the coil is toward the center of the coil, as the 

net force and net torque are both zero. 

    (b) As viewed from above: 

 
 

 

As in (a), the forces cancel. 

 

ckwisecounterclo

θIlBL

θ
L

F

mN108.09

30sinm)T)(0.350m)(1.50A)(0.220(1.40

sin

sin
2

2

2

magn

⋅×=

°=

=

=∑

−

τ

 

 

 

27.45: a) s101.52 16−×== vrT π  

    b) mA1.1=== tetQI  

    c) 2242 mA109.3 ⋅×=== −rIIA πµ  

 

 

27.46:  a)  cos,ˆˆˆ:direction,)90(sin:90 =−=−=×=°=°= φµφ B(U(IAB(IABτ ijk

    b) .cosdirection,no,0)0(sin:0 (IABB(U(IABτ −=−==== φµφ  

    c) .0cos,ˆˆˆ:direction,)90sin(:90 =−==×−=°=°= φµφ B(U(IAB(IABτ ijk  

    d) .)cos(180direction,no0,)sin(180:180 (IABB(U(IABτ =°−==°=°= µφ   

 

 

27.47: BBBUUU if µµµ 2180cos0cos −=°+°−=−=∆  

         J.2.42T))(0.835mA2(1.45 2 −=⋅−=  

 

 



27.48: a) A.4.7
Ω3.2

V105V120
=

−
=

−
=⇒+=

r

V
IIrV ab

ab

ε
ε  

     b) W.564V)A)(120(4.7supplied === abIVP  

     c) W.493Ω)(3.2A)(4.7W564 22

mech =−=−= rIIVP ab  

 

27.49: a) A.1.13
Ω106

V120
==fI  

     b) .69.313.182.4total AAAIII fr =−=−=  

     c) V.98.2Ω)A)(5.9(3.69V120 =−=−=⇒+= rrrr RIVRIV εε  

     d) W.362A)V)(3.69(98.2mech === rIP ε  

 

 

27.50: a) Field current A.0.550
Ω218

V120
==fI  

     b) Rotor current A.4.27A0.550A4.82total =−=−= fr III  

     c) V.94.8Ω)A)(5.9(4.27V120 =−=−=⇒+= rrrr RIVRIV εε  

     d) W.65.9Ω)(218A)(0.550 22 === fff RIP  

     e) W.108Ω)(5.9A)(4.27 22 === rrr RIP  

     f) Power input = (120 V) (4.82 A) = 578 W. 

     g) Efficiency = 0.621.
W578

W359

W578

W)45W108W65.9W(578

input

output ==
−−−

=
P

P
 

 

 

27.51: a) 
qAn

I
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J
vd ==  

          

.sm104.72

C)10)(1.6m10m)(5.8510m)(2.3(0.0118

A120

3

193284

−

−−−

×=⇒

×××
=

dv

 

 

    b) zBvE ydz +×=×== −− thein,CN104.48)T)(0.95sm10(4.72 33
-direction 

(negative charge). 

     c) V.105.29)CN10m)(4.48(0.0118 53

Hall

−− ×=×== zzEV  

 

 



27.52:  
εε qy

IB

qA

zIB

EqA
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BJ
n

y

z

y

z

y

z

yx

1

1 ====  

       

meter.cubicperelectrons107.3

V)10C)(1.3110m)(1.610(2.3

T)A)(2.29(78.0

28

4194

×=⇒

×××
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−−−
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27.53: a) By inspection, using jBBvF ˆ, Bq −=×=
→→→→

 will provide the correct direction 

for each force. Using either force, say .,
2

2
2

vq

F
BF =  

     b) ).since(
22

45sin 21
22

11 vv
FBvq

BvqF ===°=  

 

27.54: a) ikkjijBvF ˆˆ)]ˆˆ()ˆˆ([ zxzx qVBqVBBBqVq −=×+×−=×=
→→→

 

    b) matter.tdoesn'ofsign,0,0 yzx BBB <>   

    c) .2,ˆˆ
xxx vBqVBqVBq =−=

→→

FkiF  

 

27.55: The direction of 
→

E  is horizontal and perpendicular to ,
→

v  as shown in the sketch: 

 
qEFqvBF EB == ,  

mV7.00T))(0.500sm14.0(

so,deflectionnofor

===

==

vBE

qEqvBFF EB
 

We ignored the gravity force. If the target is 5.0 m from the rifle, it takes the 

bullet 0.36 s to reach the target and during this time the bullet moves downward 

m.62.02

2
1

0 ==− tayy y  The magnetic and electric forces we considered are horizontal. 

A vertical electric field of mV0.038== qmgE  would be required to cancel the 

gravity force. Air resistance has also been neglected. 

 

 



27.56: a) Motion is circular: 
22

1

222 DRyDxRyx −=⇒=⇒=+  (path of deflected particle) 

Ry =2  (equation for tangent to the circle, path of undeflected  particle) 

.
22

1
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111
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
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
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For a particle moving in a magnetic field, .
qB

mv
R =  

But .
21

so,
2

1 2

q

mV

B
RqVmv ==  

Thus, the deflection .
2222

22

mV

eBD

mV

qBD
d =≈  

     b) cm.6.7m0.067
V)kg)(750102(9.11

C)10(1.6

2

T)10(5.0m)(0.50
31

1952

==
×

××
= −

−−

d  

,of%13 Dd ≈  which is fairly significant. 

 

27.57: a) m/s.103.3
kg1067.1

m)40.0(T)85.0(C)106.1( 7

27

19

max ×=
×

×
==

−

−

m

qBR
v  

MeV.5.5J109.8
2

)m/s103.3(kg)1067.1(

2

1
E 13

2727

max
2

max =×=
××

==⇒ −
−

vm  

 

      b) s.106.7
m/s103.3

m)4.0(22 8

7

−×=
×

==
π

v

πR
T  

      c) If the energy was to be doubled, then the speed would have to be increased by 

,2  as would the magnetic field. Therefore the new magnetic field would be 

T.2.12 0new == BB  

 
      d)For alpha particles, 
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)2(
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2
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maxmax pE
q
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m
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p === αα  

 



27.58: a) .ˆˆ00
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    b) 
20202220 25169
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27.59: .4244
kg1011.9

kg1016.1

3
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22 31
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×
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

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27.60: a) .J1032.4J/eV)106.1(eV)102.7(MeV7.2 13196 −− ×=××=K  

m.068.0
T)5.3(C)106.1(

)m/s1027.2(kg)1067.1(

m/s.1027.2
kg1067.1

J)1032.4(22
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727

7

27

13

=
×
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==⇒
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==⇒
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qB

mv
R

m

K
v

  

rad/s.1034.3
m068.0

m/s1027.2
Also, 8

7

×=
×

==
R

v
ω  

b) If the energy reaches the final value of 5.4 MeV, the velocity increases by 2 , as 

does the radius, to 0.096 m. The angular frequency is unchanged from part (a) at 
81034.3 × rad / s. 

 

 



27.61: a) [ ] [ ]2222 )()(ˆ)(ˆ)( zxzyzxzy BvBvqFBvBvqq −=⇒−=×= jiBvF
rrr

 

          
[ ] [ ]
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N25.1
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     b)       [ ]ji
BvF

a ˆ)(ˆ)( zxzy BvBv
m

q

m

q

m
−=

×
==  

[ ]
[ ]⋅+×=⇒

+−×
×

×−
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−

−

jia

jia

ˆ3ˆ4s/m1067.9

ˆ3ˆ4T)120.0(s)/m1005.1(
kg1058.2

C1098.1

213

6

15

6

 

 

      c) The motion is helical since the force is in the xy-plane but the velocity has a z-

component. The radius of the circular part of the motion is: 

m.0.057
T)120.0(C)1098.1(

s)/m1005.1()5(kg)1058.2(
6

615

=
×

××
==

−

−

qB

mv
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      d)  MHz.14.7
kg)1058.2(2

T)120.0()C1098.1(

22 15

6

=
×

×
=== −

−

ππm

qB

π

ω
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       e) After two complete cycles, the x and y values are back to their original values, x = 

R and y = 0, but z has changed. 

m.71.1
Hz1047.1

s)/m1005.1()12(22
2

7

6

=
×

×+
===

f
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Tvz z

z  

 

 



27.62:  a) 
0.100)/kg)ln(5.001011.9(

V)120(C)106.1(

)/ln( 31
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−

×
×

==⇒=
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qV

m

qER
vqE

R

mv ab   

s./m1032.2 6×=⇒ v  

    b) 0)()( 2
2
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


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⇒+= qEvqBv
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mv
 

                 
s,/m101.91orm/s1082.2

0)1023.1()1008.2()1028.2(

66

1623229

×−×=⇒

=×−×−×⇒ −−−

v

vv
 

but we need the positive velocity to get the correct force, so v s./m1082.2 6×=  

 c) If the direction of the magnetic field is reversed, then there is a smaller net 

force and a smaller velocity, and the value is the second root found in part (b), 

s./m1019.3 6×=⇒ v  

 

 

27.63: :so,ands,/m1068.2
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So the distance between two adjacent lines is 2R = 1.6 mm. 

 

 

27.64: .0)( =−= yzzyx BvBvqF  
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27.65: a) kijBlF ˆ)T860.0()m(0.750A)58.6(ˆˆ)(: −=×=×=
→→→

BlIIl ababab  

    .ˆ)N24.4( k−=  

[ ]

[ ]
[ ]

.0ˆ)ˆ()(:

ˆ)N24.4(ˆ)T860.0()m(0.750A)58.6(ˆˆ:

ˆˆ)N24.4(

ˆˆ)T860.0()m(0.750A)58.6(ˆ

2

)ˆˆ(
)(:

.ˆ)N24.4(

ˆ)T860.0()m(0.750A)58.6(ˆ
2

)ˆˆ(
)(:

=×−=×=

−=−=×−=×=

+=⇒

+−=







×

−
=×=

−=

−=







×

−
=×=

→→→

→→→

→

→→→

→→→

iiBlF

jjikBlF

kjF

kji
jk

BlF

j

ji
ki

BlF

BlIIl

BIlIl

BlIIl

BlIIl

efefef

dedede

cdcdcd

bcbcbc

.... ....
 

b) Summing all the forces in part (a) we have .ˆ)N24.4(total jF −=
→

 

27.66: a) F = ILB, to the right. 

  b) .
22

2
22

2

ILB

mv

a

v
dadv ==⇒=  

  c) km!3140m103.14
T)(0.50m)(0.50A)2(2000

kg)(25m/s)10(1.12 6
24

=×=
×

=d  

 

 

27.67: The current is to the left, so the force is into the plane. 

 

  ∑∑ =−==−= .0sinand0Mcos Bxy Fθ(Fgθ(F  

             
LB
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IILBθgFB
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27.68: a) By examining a small piece of the wire (shown below) we find: 
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2
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      b) For a particle: 
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27.69: a) .and,Also.
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  b) This can be used for isotope separation since the mass in the 

denominator leads to different locations for different isotopes. 

 



27.70: (a) During acceleration of the ions: 

m
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v

mvqV

2
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1 2

=

=

 

In the magnetic field: 
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    (b) 
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          volts1026.2 4×=V  

   

    (c) The ions are separated by the differences in their diameters. 

 

( )

( )
hible.distinguiseasilycm8m1001.8

1214
)T150.0()C106.1(

)kg1066.1)(V1026.2(2
2

1214
)amu1(2

2

2
2

2
2

2
22

2

219

274

2

12

2

14

21214

2

−≈×=

−
×

××
=

−=

−=−=∆

==

−

−

−

qB

V

qB

Vm

qB

Vm
DDD

qB

Vm
RD

 

 

 



27.71: a)  

 Divide the rod into infinitesimal sections of 

length dr. 

 

 The magnetic force on this section is drBIdFI =  and is perpendicular to the rod. 

The torque dτ  due to the force on this section is .drIBrrdFdτ I ==  The total torque is 

m,/N2044.02

2
1

0
=== ∫∫ BIldrrBIdτ

l

clockwise. This is the same torque calculated 

from a force diagram in which the total magnetic force IlBFI =  acts at the center of the 

rod. 

b) IF  produces a clockwise torque so the spring force must produce a 

counterclockwise torque. The spring force must be to the left, the spring is stretched. 

Find x, the amount the spring is stretched: 

,0=∑τ  axis at hinge, counterclockwise torques positive 

J1098.7

m05765.0
0.53sinN/m)80.4(2

)T340.0()m200.0()A50.6(

0.53sin2

053sin)(
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kxU
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27.72:   a)  RPPQ FFI ,N0)0sin()T00.3()m600.0(A)00.5( =°=⇒×=
→→→

BlF  

( ) page).theof(outN0.12

(3.00m)(1.00A)00.5(page), theinto(N0.12)90sin()T(3.00m)(0.800A)00.5(

00.1
800.0 =

==°= QRF

 

     b) The net force on the triangular loop of wire is zero. 

     c) For calculating torque on a uniform wire we can assume that the force on a wire is 

applied at the wire’s center. Also, note that we are finding the torque with respect to the 

PR-axis (not about a point), and consequently the lever arm will be the distance from the 

wire’s center to the x-axis. 

 

 
)toparallelandrightthe to(pointingmN60.3)90sin()N0.12()m300.0(

,0sin)m0(0,N)0()sin(

PR

τFτrτθrFτ QRRPPQ

⋅=°

=====⇒=×= θFr
rrr

      d) According to Eqn. ( ) m)(0.800m)(0.600A)00.5()1(sin,28.27
2
1== φ(IABτ  

m,N60.3)90sin()T00.3( ⋅=°  which agrees with part (c). 

       e) The point Q will be rotated out of the plane of the figure. 

 

 

27.73:  

,0=∑τ  

     counterclockwise torques positive 
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27.74: a) [ ]jiBkBlF ˆ)(ˆ)()ˆ( xy BBIllII +−=×=×=
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 b) N.2.29N)545.0(N)22.2( 2222 =+=+= yx FFF  

 

 



27.75: Summing the torques on the wire from gravity and the magnetic field will enable 

us to find the magnetic field value. 

 .)m/TN(0.034160sinm)(0.080m)060.0()A2.8(60sin BBIABτB ⋅=°=°=  

 

 There are three sides to consider for the gravitational torque, leading to: 

 

,sin2sin 8866 φφτ glmglmg +=  

 

where 6l  is the moment arm from the pivot to the far 6 cm leg and 8l  is the moment arm 

from the pivot to the centers of mass of the 8 cm legs. 

  

 

direction.-thein,T0.024
T/mN0.0341

mN108.23
mN1023.8
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27.76: a) mN0.03060sinT)(0.48m)(0.080m)A)(0.060(15.060sin ⋅=°=°= IABτ   

ĵthein −  direction. To keep the loop in place, you must provide a torque in the ĵ+  

direction. 

 b) m,N0.01730sinT)(0.48m)(0.080m)60.0)(A0.15(30sin ⋅=°=°= IABτ  in 

the ĵ+  direction you must provide a torque in the ĵ−  direction to keep the loop in 

place. 

 c) If the loop was pivoted through its center, then there would be a torque on both 

sides of the loop parallel to the rotation axis. However, the lever arm is only half as large, 

so the total torque in each case is identical to the values found in parts (a) and (b). 
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 This describes simple harmonic motion with 
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27.78:    .sinsin φφµ IABB ==τ
r

 

 .
8422

,
2

,90
2

2

2

22

2

π

Bqωω
B

π

πL

π

qω
τ

L
rA

π

qω
fqI =















=⇒






====°=
π

ππφ  

 

 

27.79: The y-components of the magnetic field provide forces  which cancel as you go 

around the loop. The x-components of the magnetic field, however, provide a net force in 

the –y- direction.  
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27.80: ).()( P
iipiiiii ∑∑∑∑∑∑

→→→→→→→→→→→

=×−=×−×=×= τFrrFrFrFrτ pii  

 Note that we added a term after the second equals sign that was zero because the 

body is in translational equilibrium. 
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     c) The sum of all forces is .ˆ0total jF LIB−=
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     c) If free to rotate about the x-axis .ˆ
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constant. 

 

 



27.83: a) m,0.325m0.025m350.0 =−=∆y  we must subtract off the amount 

immersed since the bar is accelerating until it leaves the pools and thus hasn’t reached 0v  

yet. 
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 b) In a distance of 0.025 m the wire’s speed increases from zero to 2.52 m/s. 
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27.86: a) [ ].ˆcosˆsinˆ jitl θθRdθdld +−==
r

 Note that this implies that when ,0=θ the 

line element points in the + y-direction, and when the angle is ,90°  the line element 

points in the – x-direction. This is in agreement with the diagram. 
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27.87: a) ∫ ∫ ∫ ∫ ∫ =+=+=⋅
top barrel top barrel
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2

)(20 2 βr
rBrLBrL rr −=⇒+=⇒ ππβ  

 b) The two diagrams show views of the field lines from the top and side: 
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 b) The distance along the curve, ,d is given by 
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27.90: a) .JlBIlBAFAp ===∆  
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27.91: a) The maximum speed occurs at the top of the cycloidal path, and hence the 
radius of curvature is greatest there. Once the motion is beyond the top, the particle is 

being slowed by the electric field. As it returns to ,0=y  the speed decreases, leading to a 

smaller magnetic force, until the particle stops completely. Then the electric field again 
provides the acceleration in the y-direction of the particle, leading to the repeated motion. 
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Capítulo 28 



28.1: For a charge with velocity ,ˆ)sm108.00(
6

jv ×=
r

 the magnetic field produced at 

a position r  away from the particle is .
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28.4: a) Following Example 28.1 we can find the magnetic force between the charges: 

down).points
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The Coulomb force between the charges is 

N3.75)CmN108.99( 2

212

m)(0.240

C100)(8.00)(3.0229 =⋅×==
−×

2

21

r

qq
kF  (the force on the upper 

charge points up and the force on the lower charge points down). 

The ratio of the Coulomb force to the magnetic force is 
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     b) The magnetic forces are reversed when the direction of only one velocity is 

reversed but the magnitude of the force is unchanged. 

 

 



28.5: The magnetic field is into the page at the origin, and the magnitude is 
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28.6: a) 
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28.8: The magnetic field at the given points is: 
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28.9: The wire carries current in the z-direction. The magnetic field of a small piece of 

wire 
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28.11: a) At the point exactly midway between the wires, the two magnetic fields are in 

opposite directions and cancel. 

 b) At a distance a above the top wire, the magnetic fields are in the same 

direction and add up: kkkkkB ˆ
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 c) At the same distance as part (b), but below the lower wire, yields the same 

magnitude magnetic field but in the opposite direction: kB ˆ
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28.12: The total magnetic field is the vector sum of the constant magnetic field and the 

wire’s magnetic field. So: 

 a) At (0, 0, 1 m): 
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       b) Since the magnitude of the earth’s magnetic filed is 51000.5 −×  T, to the north, 

the total magnetic field is now o30  east of north with a magnitude of 51078.5 −×  T. This 

could be a problem! 

 

 



28.16: a) B = 0 since the fields are in opposite directions. 
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28.17: The only place where the magnetic fields of the two wires are in opposite 

directions is between the wires, in the plane of the wires. 

Consider a point a distance x from the wire carrying 2I  = 75.0 A. totB  will be 

zero where 21 BB = . 
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x = 0.300 m; 0tot =B  along a line 0.300 m from the wire carrying 75.0 A amd 0.100 m 

from the wire carrying current 25.0 A. 

 b) Let the wire with 0.251 =I A be 0.400 m above the wire with 2I  = 75.0 A. 

The magnetic fields of the two wires are in opposite directions in the plane of the wires 

and at points above both wires or below both wires. But to have 21 BB =  must be closer 

to wire #1 since 1I < 2I , so can have 0tot =B  only at points above both wires. 

 Consider a point a distance x from the wire carrying 0.251 =I  A. totB  will be 

zero where .21 BB =  
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0tot =B  along a line 0.200 m from the wire carrying 25.0 A and 0.600 m from the wire 

carrying current 0.752 =I  A. 

  

 



28.18: (a) and (b) B = 0 since the magnetic fields due to currents at opposite corners of 

the square cancel. 

 

(c) 
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28.19:  
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To give 4B  in the ⊗  direction the current in wire 4 must be toward the bottom of the 

page. 
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28.20: On the top wire: ,
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On the middle wire, the magnetic fields cancel so the force is zero. 

On the bottom wire: ,
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28.21: We need the magnetic and gravitational forces to cancel: 
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F  and the force is 

repulsive since the currents are in opposite directions. 

      b) Doubling the currents makes the force increase by a factor of four to 
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      b) The two wires repel so the currents are in opposite directions. 

 

 

28.24: There is no magnetic field at the center of the loop from the straight sections.  

The magnetic field from the semicircle is just half that of a complete loop: 
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 into the page. 

 

 

28.25: As in Exercise 28.24, there is no contribution from the straight wires, and now we 

have two oppositely oriented contributions from the two semicircles: 
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21 II
R

BBB −







=−=

µ
 

into the page. Note that if the two currents are equal, the magnetic field goes to zero at 

the center of the loop. 

 

 

28.26: a) The field still points along the positive x-axis, and thus points into the loop 

from this location. 

      b) If the current is reversed, the magnetic field is reversed. At point P the field would 

then point into the loop. 

      c) Point the thumb of your right hand in the direction of the magnetic moment, under 

the given circumstances, the current would appear to flow in the direction that your 

fingers curl (i.e., clockwise). 
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28.28: a) From Eq. (29-17), .T1042.9
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      b) 41083.3 −×−  since l
r

d  points opposite to B
r
 everywhere. 

 

 

28.31: We will travel around the loops in the counterclockwise direction. 
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 Using Ampere’s Law in each case, the sign of the line integral was determined by 

using the right-hand rule. This determines the sign of the integral for a counterclockwise 

path. 

 

 



28.32:  Consider a coaxial cable where the currents run in OPPOSITE directions. 

      a) For .
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       b) For ,cr >  the enclosed current is zero, so the magnetic field is also 

zero. 

 

 

28.33:   Consider a coaxial cable where the currents run in the SAME direction. 
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28.34:    Using the formula for the magnetic field of a solenoid: 
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28.38:   Outside a toroidal solenoid there is no magnetic field and inside it the magnetic 

field is given by .
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0
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�Iµ
B =  

    a) r = 0.12 m, which is outside the toroid, so B = 0. 
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    c) r = 0.20 m, which is outside the toroid, so B = 0 
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28.43:  a) The magnetic field from the solenoid alone is: 
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28.45:  

 
 

The material does obey Curie’s Law because we have a straight line for temperature 

against one over the magnetic susceptibility. The Curie constant from the graph is 
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28.46: The magnetic field of charge q′  at the location of charge q is into the page. 
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where θ  is the angle between .ˆand r ′′v  
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  Let the current run left to right, the electron moves in the opposite direction, 

below the wire, then the magnetic field at the electron is into the page, and the electron 

feels a force upward, toward the wire, by the right-hand rule (remember the electron is 

negative). 
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  b) The electric force must balance the magnetic force. 
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28.49: Let the wire connected to the 25.0 Ω  resistor be #2 and the wire connected to 

the 10.0 Ω  resistor be #1. Both 21 and II  are directed toward the right in the figure, so at 

the location of the proton =⊗ 12 and IisI ⊙ 
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and in the direction ⊙. 

 

  Force is to the right. 
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28.50: The fields add 
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28.51: a) 

 

          Along the dashed line, 21 and BB  are in opposite directions. 

If the line has slope 21then00.1 rr =−  and 
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28.53: Choose a cube of edge length L , with one face on the y-z plane. Then: 
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so the only possible field is a zero field. 
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28.55: a) If the magnetic field at point P is zero, then from Figure (28.46) the current 2I  

must be out of the page, in order to cancel the field from 1I . Also: 
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       b) Given the currents, the field at Q  points to the right and has magnitude 
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        c) The magnitude of the field at S is given by the sum of the squares of the two 

fields because they are at right angles. So: 
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28.56: a) 

 
        b) At a position on the x-axis: 
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in the positive x-direction , as shown at left. 

        c) 

 
        d) The magnetic field is a maximum at the origin, x = 0. 
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       b) At a position on the x-axis: 
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   in the negative y-direction, as shown at left. 

 

c) 

 
 

d) The magnetic field is a maximum when: 
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28.58: a) Wire carrying current into the page, so it feels a force downward from the 

other wires, as shown at right. 
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             b) If the wire carries current out of the page then the forces felt will be the 

opposite of part (a) . Thus the force will be ,mN1011.1 5−×  upward. 

 

28.59:  The current in the wires is ( ) ( ) .A0.90500.0V0.45R =Ω== εI  The currents 

in the wires are in opposite directions, so the wires repel. The force each wire exerts on 

the other is 
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 To hold the wires at rest, each spring exerts a force of 0.189 N on each wire. 
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28.60: a) Note that the Earth’s magnetic field exerts no force on wire B, since the 

current in wire B is parallel to the Earth’s magnetic field. Thus, for equilibrium, the 

remaining two forces that act on wire B must cancel. Assuming that the length of wire B 

is L  and that wire A carries a current I  we obtain 
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     b) Note that the force on wire B that is generated by wire C is to the right. Thus, if the 

current in wire C is increased, wire B will slide to the right. 

 

 



28.61: 

 
 

The wires are in equilibrium, so: 
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28.62: The forces on the top and bottom segments cancel, leaving the left and right sides: 
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28.63: a) θµB
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       c) Having ax >> allows us to simplify the form of the magnetic field, whereas 

assuming ax ′>> means we can assume that the magnetic field from the first loop is 

constant over the second loop. 
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28.65: a) Recall for a single loop: .2/322
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Here we have two loops, each of 

� turns, and measuring the field along the x-axis from between them means that the 

""x in the formula is different for each case:  
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     b) Below left: Total magnetic field. Below right: Magnetic field from right coil. 
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28.66: A wire of length l  produces a field .
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field into the page so we can just add them up: 
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And the right and bottom edges just produce the same contribution as the left and top, 

respectively. Thus the total magnetic field is: 
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28.67: The contributions from the straight segments is zero since .0=× rl
r

d  The 

magnetic field from the curved wire is just one quarter of a full loop: 
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and is out of the page. 

 

 

28.68: The horizontal wire yields zero magnetic field since .0=× rl
r

d  The vertical 

current provides the magnetic field of HALF of an infinite wire. (The contributions from 

all infinitesimal pieces of the wire point in the same direction, so there is no vector 

addition or components to worry about.) 
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28.71:   If there is a magnetic field component in the z-direction, it must be constant 

because of the symmetry of the wire. Therefore the contribution to a surface integral over 

a closed cylinder, encompassing a long straight wire will be zero: no flux through the 

barrel of the cylinder, and equal but opposite flux through the ends. The radial field will 

have no contribution through the ends, but through the barrel: 
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28.73: 

  

  Apply Ampere’s law to a circular path of radius 2a. 
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the cylinder axis. 

 Outside the cylinder, .
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28.74: At the center of the circular loop the current 2I  generates a magnetic field that is 

into the page–so the current 1I  must point to the right. For complete cancellation the two 

fields must have the same magnitude 
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where we used the substitution θ= tanz  to go from the first to second line. This is just 

what Ampere’s Law tells us to expect if we imagine the loop runs along the x-axis 

closing on itself at infinity: ∫ =⋅ .0Iµd lB  
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but .0but,0.0 ≠== ababcd BLBB  This is a contradiction and violates Ampere’s Law. See 

the figure on the next page. 

 

 
 

 

28.79: a) Below the sheet, all the magnetic field contributions from different wires add 

up to produce a magnetic field that points in the positive x-direction. (Components in the 

z-direction cancel.) Using Ampere’s Law, where we use the fact that the field is anti-

symmetrical above and below the current sheet, and that the legs of the path 

perpendicular provide nothing to the integral: So, at a distance a  beneath the sheet the 

magnetic field is: 
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in the positive x-direction. (Note there is no dependence on a.) 

 
 

 b) The field has the same magnitude above the sheet, but points in the negative x-

direction. 

 

 



28.80: Two infinite sheets, as in Problem 28.79, are placed one above the other, with 

their currents opposite. 

 
 

     a) Above the two sheets, the fields cancel (since there is no dependence upon the 

distance from the sheets). 

     b) In between the sheets the two fields add up to yield ,0nIB µ= to the right. 

     c) Below the two sheets, their fields again cancel (since there is no dependence upon 

the distance from the sheets). 
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28.82: The microscopic magnetic moments of an initially unmagnetized ferromagnetic 

material experience torques from a magnet that aligns the magnetic domains with the 

external field, so they are attracted to the magnet. For a paramagnetic material, the same 

attraction occurs because the magnetic moments align themselves parallel to the external 

field. 

 For a diamagnetic material, the magnetic moments align anti-parallel to the 

external field so it is like two magnets repelling each other. 

      

     b) The magnet can just pick up the iron cube so the force it exerts is: 

 

 N.0.612)sm(9.8m))(0.020mkg108.7( 23333 =×=== gagmF FeFeFe ρ  

 

But .
N612.0
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Fe

Fe

Fe
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a

B
IaBF

µ
µ

=⇒===  

 So if the magnet tries to lift the aluminum cube of the same dimensions as the iron 

block, then the upward force felt by the cube is: 
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000022.1
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But the weight of the aluminum cube is: 

 

 N.0.212)sm(9.8m))(0.020mkg107.2( 23333 =×=== gaρgmW AlAl  

 

So the ratio of the magnetic force on the aluminum cube to the weight of the cube is  

,101.2 3

N212.0

N1037.4 4 −× ×=
−

and the magnet cannot lift it. 

 

 c) If the magnet tries to lift a silver cube of the same dimensions as the iron 

block, then the DOWNWARD force felt by the cube is: 
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But the weight of the silver cube is: 

N.0.823)sm(9.8m))(0.020mkg105.10( 23333 =×=== gagmW AgAg ρ  

So the ratio of the magnetic force on the silver cube to the weight of the cube is 

,103.5 4

N823.0

N1037.4 4 −× ×=
−

and the magnet’s effect would not be noticeable. 

 

 



28.83: a) The magnetic force per unit length between two parallel, long wires is: 
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where 
2

0I
 is the rms current over the short discharge time. 

 .
λ4λ44

λ

2

00
022

2

00

2

00

dRC

Q
aRCatv

CdR

Q
a

RC

Q

d
aa

L

m

L

F

π
µ

π
µ

π
µ

===⇒=⇒






===  

 

     b) .sm3470.
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     c) Height that the wire reaches above the original height: 
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28.84: The amount of charge on a length x∆  of the belt is: 

 

    .Lvσσ
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x
L
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Q
IxσLQ =

∆
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∆
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Approximating the belt as an infinite sheet: 

    ,
22

00 vσµ

L

Iµ
B ==  

out of the page, as shown at left. 

 

 



28.85: The charge on a ring of radius r is .
2

2
2a

Qrdr
rdrAq === πσσ  If the disk rotates 

at n turns per second, then the current from that ring is: 
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So we integrate out from the center to the edge of the disk to find: 
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28.86: There are two parts to the magnetic field: that from the half loop and that from the 

straight wire segment running from a− to a. 
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Capítulo 29 



29.1:   )0.37cos1(0.37cosand, °−=∆Φ⇒°=Φ=Φ �BA�BA�BA BBB if
 

 

V.5.29

s0600.0

)0.37cos1)(m25.0)(m400.0)(T10.1)(80(

)0.37cos1(

=⇒

°−
−=

∆
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∆Φ
−=⇒

ε

ε
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�BA

t

B

 

 

29.2: a) Before: )m1012)(T100.6)(200( 245 −− ××==Φ �BAB  

 0:after;mT1044.1 25 ⋅×= −  

        b) .V106.3
s040.0

)m102.1)(T100.6)(200( 4
235

−
−−

×=
××

=
∆

=
∆

∆Φ
=

t

�BA

t
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29.3: a) .
R

�BA
Q�BAQRR

t

Q
IR

t

�BA

t

B =⇒=⇒







∆

==
∆

=
∆

∆Φ
=ε  

        b) A credit card reader is a search coil. 

        c) Data is stored in the charge measured so it is independent of time. 

 

 

29.4: From Exercise (29.3), 

  .C1016.2
0.1280.6

)m1020.2(T)05.2)(90( 3
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−
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Ω+Ω

×
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29.5: From Exercise (29.3), 
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29.6: a) (((( ))))445 )sT1000.3(s)T012.0()( tt
dt

d
�AB

dt

d
�A

dt

�d B −−−−××××++++============
Φ

ε  
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.)sV1002.3(V0302.0

)sT102.1()sT012.0(

334
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t

t�A

−
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×+=

×+=⇒ ε
 

      b) At  V0680.0)s00.5)(sV1002.3(V0302.0s00.5 324 +=×+=⇒= −εt
.
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29.7: a)  for
2

sin
22

cos1 0
0 





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−=











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







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d
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d B πππ
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otherwise.zero;0 Tt << .  

       b) 
2

at0
T

t ==ε  

       c) .
4

3
and

4
atoccurs

2 0
max

T
t

T
t

T

π�AB
===ε  

 d) From Bt T ,0
2

<<  is getting larger and points in the z+ direction. This gives a 

clockwise current looking down the z− axis. From BTtT ,
2

<  is getting smaller but still 

points in the z+ direction. This gives a counterclockwise current. 

 

29.8: a) )( 1ind AB
dt
d

dt

d == ΦBε  

  ( )ts057.0

ind

1

)T4.1(60sin60sin
−−°=°= e

dt

d
A

dt

dB
Aε  

          ts057.012 1

)s057.0)(T4.1)(60)(sin(
−−−°= erπ  

          
tse
1057.012 )s057.0)(T4.1)(60(sin)m75.0(

−−−°= π  

          = tse
1057.0V12.0

−−  

       b) )V12.0(
10

1

10

1
0 == εε  

 
tse
1

057.0V12.0)V12.0(
10

1 −−=  

    s4.40s057.0)101(ln 1 =→−= − tt  

       c) B is getting weaker, so the flux is decreasing. By Lenz’s law, the induced current 

must cause an upward magnetic field to oppose the loss of flux. Therefore the induced 

current must flow counterclockwise as viewed from above. 

 

 

 



29.9: a) πππ 4/soand2 22 cArArc ============  
2)4( cBBAB π==Φ  

dt
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π
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d
ε B 
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



=
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=
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At m570.0)s120.0)(s0.9(m650.1,s0.9 =−== ct  

mV44.5)sm120.0)(m570.0)(21)(T500.0( == πε  

     b) 

  Flux⊗ is decreasing so the flux of the induced 

current 

⊗Φ isind  and I is clockwise. 

29.10: According to Faraday’s law (assuming that the area vector points in the positive z-

direction) 

 )ckwisecounterclo(V34
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)m120.0()T5.1(0
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29.11: φφ;cosBAB =Φ  is the angle between the normal to the loop and B
r
, so °= 53φ  

V1002.6)sT1000.1(53cos)m100.0())(cos( 632 −− ×=×°==
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= dtdBA
dt

d B φε  

 

29.12: a) 

:sos,rev20minrev1200andsin)cos( ===
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= ωt�BAt�BA
dt
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dt

d B ωωε  

)revrad2sec)(60min1min)(rev440()m025.0()T060.0)(150( 2

max ===⇒ ππωε �BA

 

 b) Average .V518.0V814.0
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29.13: From Example 29.5, 
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29.14: ωεωωωε �BAt�BAt�BA
dt

d
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d
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−= max

B sin)cos(  
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�BA
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==⇒
−ε
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29.15: 

 

 

 

29.16: a) If the magnetic field is increasing into the page, the induced magnetic field 

must oppose that change and point opposite the external field’s direction, thus requiring a 

counterclockwise current in the loop. 

     b) If the magnetic field is decreasing into the page, the induced magnetic field must 

oppose that change and point in the external field’s direction, thus requiring a clockwise 

current in the loop. 

     c) If the magnetic field is constant, there is no changing flux, and therefore no 

induced current in the loop. 

 

 

29.17: a) When the switch is opened, the magnetic field to the right decreases. Therefore 

the second coil’s induced current produces its own field to the right. That means that the 

current must pass through the resistor from point a to point b. 

     b) If coil B is moved closer to coil A, more flux passes through it toward the right. 

Therefore the induced current must produce its own magnetic field to the left to oppose 

the increased flux. That means that the current must pass through the resistor from point b

to point a. 

     c) If the variable resistor R is decreased, then more current flows through coil A, and 

so a stronger magnetic field is produced, leading to more flux to the right through coil B. 

Therefore the induced current must produce its own magnetic field to the left to oppose 

the increased flux. That means that the current must pass through the resistor from point b

to point a. 

 

 



29.18: a) With current passing from ba → and is increasing the magnetic, field 

becomes stronger to the left, so the induced field points right, and the induced current 

must flow from right to left through the resistor. 

     b) If the current passes from ab → , and is decreasing, then there is less magnetic 

field pointing right, so the induced field points right, and the induced current must flow 

from right to left through the resistor. 

     c) If the current passes from ,ab →  and is increasing, then there is more magnetic 

field pointing right, so the induced field points left, and the induced current must flow 

from left to right through the resistor. 

 

 

29.19: a) BΦ is ⊙ and increasing so the flux indΦ  of the induced current is clockwise. 

    b) The current reaches a constant value so BΦ  is constant. 0=Φ dtd B  and there is 

no induced current. 

    c) BΦ  is ⊙ and decreasing, so indΦ  is ⊙ and current is counterclockwise. 

 

 

29.20: a) )m50.1)(T750.0)(sm0.5(== vBlε  

V6.5=  

     b) (i) 

 
Let q be a positive charge in the moving bar. The 

magnetic force on this charge ,BvF
rrr

×= q  which 

points upward. This force pushes the current in a 

counterclockwise direction through the circuit. 

 (ii) The flux through the circuit is increasing, so the induced current must cause a 

magnetic field out of the paper to oppose this increase. Hence this current must flow in a 

counterclockwise sense. 

 
     c)    Ri=ε  
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29.22: a) .V675.0)m300.0)(T450.0)(sm00.5( === vBLε  

 b) The potential difference between the ends of the rod is just the motional emf 

.V675.0=V  

 c) The positive charges are moved to end b, so b is at the higher potential. 

 d) .
m

V
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 e) b 

 

29.23: a) .sm858.0
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ε
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 b) .A827.0
750.0

V620.0
=

Ω
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R
I

ε
 

 c) N598.0)T850.0)(m850.0)(A827.0( === ILBF , to the left, since you must 

pull it to get the current to flow. 

 

29.24: a) .V00.3)m500.0)(T800.0)(sm50.7( === vBLε  

 b) The current flows counterclockwise since its magnetic field must oppose the 

increasing flux through the loop. 

 c) ,N800.0
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===
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ε
 to the right. 

 d) .W00.6)sm50.7)(N800.0(mech === FvP  
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 W. So both rates are equal. 

 



29.25: For the loop pulled through the region of magnetic field, 
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 b) 
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29.26: a) Using Equation (29.6): .T833.0
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ε
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     b) Point a is at a higher potential than point b, because there are more positive 
charges there. 
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29.28: a) .
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     c) All the flux is within r < R, so outside the solenoid 
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29.29: a) The induced electric field lines are concentric circles since they cause the 

current to flow in circles. 
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,mV1075.1 3−×=⇒ E in the clockwise direction, since the induced magnetic field 

must reinforce the decreasing external magnetic field. 
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=== TOTIRIRε  

     e) If the ring was cut and the ends separated slightly, then there would be a potential 

difference between the ends equal to the induced emf: 
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29.31: a) 

∫ −−− ×=××==⋅= .J1014.1)m0350.0(2)mV1000.8)(C1050.6(2 1166 ππRqEdW lF
rr

 

     (b) For a conservative field, the work done for a closed path would be zero. 

     (c) ∫ =⇒
Φ

−=⋅ .
dt

di
BAEL

dt

d
d BlE
rr

 A is the area of the solenoid. 

 For a circular path: 

 ==
dt

di
BArE π2 constant for all circular paths that enclose the solenoid. 

 So == rqEW π2 constant for all paths outside the solenoid. 
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29.34: According to Eqn.29.14 =
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    c) Using Ampere’s Law 
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same as .ci  
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29.39:In a superconductor there is no internal magnetic field, and so there is no changing 

flux and no induced emf, and no induced electric field. 

,0)(0 00encl0
material
Inside =⇒=+==⋅= ∫ ccDc IIIIId µµµlB  

and so there is no current inside the material. Therefore, it must all be at the surface of the 

cylinder. 

 

29.40:Unless some of the regions with resistance completely fill a cross-sectional area of 

a long type-II superconducting wire, there will still be no total resistance. The regions of 

no resistance provide the path for the current. Indeed, it will be like two resistors in 

parellel, where one has zero resistance and the other is non-zero. The equivalent 

resistance is still zero. 

 

29.41: a) For magnetic fields less than the critical field, there is no internal magnetic 

field, so: 

Inside the superconductor: .ˆ)mA1003.1(
ˆ)130.0(

,0 5

00

0 i
i

MB ×−=−=−==
µ

T

µ

B
 

Outside the superconductor: .0,ˆ)130.0(0 === MiBB T  

  b) For magnetic fields greater than the critical field, 00 =⇒= Mχ  both inside 

and outside the superconductor, and ,ˆ)T260.0(0 iBB ==  both inside and outside the 

superconductor. 

 



29.42: a) Just under 1cB (threshold of superconducting phase), the magnetic field in the 

material must be zero, and .ˆ)mA1038.4(
ˆT1055 4
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iB
M ×−=

×
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µµ
c

 

 b) Just over 2cB  (threshold of normal phase), there is zero magnetization, and 

.ˆ)T0.15(2 iBB == c  

 

29.43:a) The angle φ  between the normal to the coil and the direction of .30.0is °B  

.||and)(|| 2 RIdtdBr�
dt

d B επε ==
Φ

=  

For 0and0||,0s,00.1and0 ===>< IdtdBtt ε  

For πtπdtdBt sinT)120.0(s,00.10 =≤≤  
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m125.7m)0400.0()2()500(2 ==== ππr��cL  

Ω= 3058wR and the total resistance of the circuit is 

Ω=Ω+Ω= 36586003058R  

tRI πε sinmA)259.0(/|| ==  

 
 

b)  

  B increasing so isBΦ ⊙ and increasing 

Isoisind ⊗Φ  is clockwise 

 

 



29.44: a) The large circuit is an RC  circuit with a time constant of 

s.200F)1020()10( 6 µτ =×Ω== −RC Thus, the current as a function of time is 

s200
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V100 µ
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ei
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Ω
=  

At s,200µ=t  we obtain A.7.3)(A)10( 1 == −ei  

     b) Assuming that only the long wire nearest the small loop produces an appreciable 

magnetic flux through the small loop and referring to the solution of Problem 29.54 we 

obtain 
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So the emf induced in the small loop at iss200µ=t  
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 Thus, the induced current in the small loop is A.54
)m(1.0m)25(0.600

mV81.0 µε ===′ ΩR
i  

    c) The induced current will act to oppose the decrease in flux from the large loop. 

Thus, the induced current flows counterclockwise. 

    d) Three of the wires in the large loop are too far away to make a significant 

contribution to the flux in the small loop–as can be seen by comparing the distance c  to 

the dimensions of the large loop. 

 

 



29.45:  a)  

 
    b)  
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29.46: a) .
sin)cos(11
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τω ==  which is the same as part (b). 
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   e) We can ignore the self-induced currents because it takes only a very short time for 

them to die out. 

 

 

29.48: a) Choose the area vector to point out of the page. Since the area and its 

orientation to the magnetic field are fixed, we can write the induced emf in the 10 cm 

radius loop as 

])sV(4.00V)0.20[(10m)10.0( 42 t
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After solving for 
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dBz  and integrating we obtain 
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    b) Repeat part (a) but set  t)sV10(4.00V)1000.2( 43 −− ×+×−=ε  to obtain 

T698.0−=zB  

    c) In part (a) the flux has decreased (i.e., it has become more negative) and in part (b) 

the flux has increased. Both results agree with the expectations of Lenz’s law. 

 



29.49:a) (i) 
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Consider a narrow strip of width dx and a distance x  from 

the long wire. 

The magnetic field of the wire at the strip is .20 xIB πµ=  

The flux through the strip is 
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     (ii) Bvl=ε  for a bar of length lmoving at speed v  perpendicular to magnetic field 

.B  

 

  
The emf in each side of the loop is  



29.50:a) Rotating about the :axis−y  

 V.0.945m)10(6.00T)(0.450)srad0.35( 2

max =×==
Φ

= −BA
dt

d B ωε  

     b) Rotating about the .00:axis B =⇒=
Φ

− ε
dt

d
x  

     c) Rotating about the :axis−z  

 V.0.945m)10(6.00T)(0.450)srad0.35( 2

max =×==
Φ

= −BA
dt

d B ωε  

 

 

29.51: From Example 29.4, ωBAωtBAωε == max;sin ε  

 For �  loops, BAω�ε =max  
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29.52: a) The flux through the coil is given by ),cos( t�BA ω  where �  is the number of 

turns, B is the strength of the Earth’s magnetic field, and ω  is the angular velocity of the 

rotating coil. Thus, ),sin( t�BA ωωε =  which has a peak amplitude of .0 �BAωε =  

Solving for A  we obtain 
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     b) Assuming a point on the coil at maximum distance from the axis of rotation we 

have 
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     b) Since the flux through the loop is decreasing, the induced current must produce a 

field that goes into the page. Therefore the current flows from point a  through the 

resistor to point b . 
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29.55: a)  
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calculated in part (b). 

 
 

    b) The terminal speed tv  occurs when the pulling force is equaled by the magnetic 

force: .
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29.56:     The bar will experience a magnetic force due to the induced current in the loop. 

According to Example 29.6, the induced voltage in the loop has a magnitude ,BLv which 

opposes the voltage of the battery, .ε  Thus, the net current in the loop is .
R
BLvI −= ε  The 

acceleration of the bar is .
)()sin(90

mR

LBBLv

m

ILB

m
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−° === ε
 

     a) To find 
mR

LBBLv

dt
dv atv

)(
set),(

−== ε
 and solve for v  using the method of separation 

of variables: 
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Note that the graph of this function is similar in appearance to that of a charging 

capacitor. 

     b) 
2
sm2.3N;88.2A;4.2 ====== mFaILBFRεI  

     c) When 
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     d) Note that as the velocity increases, the acceleration decreases. The velocity will 

asymptotically approach the terminal velocity ,sm10
m)(0.8T)(1.5

V12 ==ε
BL

 which makes the 

acceleration zero. 

 

 

29.57:     m0.2T,100.8; 5 =×== − LBBvlε  

        Use ∑ = aF m  applied to the satellite motion to find the speed v  of the satellite. 
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       Using this v gives V2.1=ε  

 

29.58:      a) According to Example 29.6 the induced emf is T)108( 5−×== BLvε  

mV.0.1V96)(300m)(0.004 ≈= µsm  Note that L is the size of the bar measured in a 

direction that is perpendicular to both the magnetic field and the velocity of the bar. Since 

a positive charge moving to the east would be deflected upward, the top of the bullet will 

be at a higher potential. 

 b) For a bullet that travels south, the induced emf is zero. 

 c) In the direction parallel to the velocity the induced emf is zero. 

 

 



29.59:      From Ampere’s law (Example 28.9), the magnetic field inside the wire, a 

distance r from the axis, is .2)( 2

0 RIrrB πµ=  

 Consider a small strip of length W and width dr that  

is a distance r from the axis of the wire. 
The flux through the strip is 
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     The total flux through the rectangle is 
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Note that the result is independent of the radius R of the wire. 
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    d)  Evaluating the emf at 21021.1 −×=t s, using the equations of part (b): 

,V6067.0−−−−====ε  and the current flows clockwise, from b to a through the resistor. 
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     b)  The magnetic force is strongest at the top end, closest to the current carrying wire. 
Therefore, the top end, point a, is the higher potential since the force on positive charges 

is greatest there, leading to more positives gathering at that end. 
     c)  If the single bar was replaced by a rectangular loop, the edges parallel to the wire 

would have no emf induced, but the edges perpendicular to the wire will have an emf 
induced, just as in part (b). However, no current will flow because each edge will have its 

highest potential closest to the current carrying wire. It would be like having two batteries 
of opposite polarity connected in a loop. 
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Wire C: .V0.014845sinm)(0.500T)(0.120)sm(0.350sin ====°°°°======== φε vBL  

Wire 

D: .V0.021045sinm)(0.5002T)(0.120)sm(0.350sin ====°°°°======== φε vBL  
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.V0.164
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    b) The  potential difference between its ends is the same as the induced emf. 

    c) Zero, since the force acting on each end points toward the center.   
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29.64: a)  From Example 29.7, the power required to keep the bar moving at a constant 

velocity is .Ω0.090
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       b)  For a 50 W power dissipation we would require that the resistance be 

decreased to half the previous value. 

       c)  Using the resistance from part (a) and a bar length of 0.20 m 
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29.67: At point  ,
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πε  to the 

left. At point b , the field is the same magnitude as at a since they are the same distance 

from the center. So ,
2 dt

dBqr
F =  but upward. 

At point ,c  there is no force by symmetry arguments: one cannot have one 

direction picked out over any other, so the force must be zero. 
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But since we assumed ,0≠abE  this contradicts Faraday’s law. Thus, we can’t have a 

uniform electric field abruptly drop to zero in a region in which the magnetic field is 

constant. 

 

 
 

 

29.69: At the terminal speed, the upward force BF  exerted on the loop due to the induced 

current equals the downward force of gravity: mgFB =  
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        Using these expressions for m and R gives 216 Bgρρv RmT =  

 

 



29.70: ∫ =⋅ 0lB
rr
d  (no currents in the region). Using the figure, let 

0.for 0 and0forˆ
0 >=<= yByBB i  
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but .0but,0.0 ≠== ababcd BLBB  This is a contradiction and violates Ampere’s Law.  

See the figure on the next page. 
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29.72: a)  .mA1096.1
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     d)  The two current densities are out of phase by °90  because one has a sine function 

and the other has a cosine, so the displacement current leads the conduction current by 

.90°  

 

 



29.73: a)  ,grτ mcmG ×= ∑  summed over each leg, 
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     c)  The magnetic torque slows down the fall (since it opposes the gravitational torque). 
     d)  Some energy is lost through heat from the resistance of the loop. 

 



29.74: a)  For clarity, figure is rotated so B  comes out of the page. 

 

 
 

      

b) To work out the amount of the electric field that is in the direction of the loop at a 

general position, we will use the geometry shown in the diagram below. 
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 which is exactly the value for a ring, obtained in 

Exercise 29.29, and has no dependence on the part of the loop we pick. 

     c)  A.1037.7
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But there is potential drop ,V1075.1 4−×−== IRV  so the potential difference is zero. 

 



29.75: a)  
 

 
 

       b)  The induced emf on the side ac  is zero, because the electric field is always 

perpendicular to the line .ac  

       c)  To calculate the total emf in the loop, 
dt

dB
L
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d B 2==
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ε
 

      e)  Since the loop is uniform, the resistance in length ac  is one quarter of the total 

resistance. Therefore the potential difference between a and c is: 

 V,103.50)4A)(1.901037.7( 44 -

acac IRV ×=Ω×== − and the point a is at a higher 

potential since the current is flowing from c.toa  

 

 
29.76: a)  As the bar starts to slide, the flux is decreasing, so the current flows to increase 

the flux, which means it flows from .to ba  

       b)  The magnetic force on the bar must eventually equal that of gravity. 
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the same as found in part (d). 

 



29.77: The primary assumption throughout the problem is that the square patch is small enough so 

that the velocity is constant over its whole areas, that is, .drv ωω ≈=  

      a)  :page intoclockwise, →→ Bω  

             BLdvBL ωε ==   

       Bv ×===⇒ Since.
ρ

ω
ρ
εε dBA

L

A

R
I  points outward, A  is just the cross-sectional 

area .tL  

             
ρ

ωdBLt
I =⇒  flowing radially outward since Bv ×  points outward. 

                  b)  ILBIBb =×=×= BLFFdτ ;  pointing counterclockwise. 

                  So  
ρ

ω
τ

tLBd 222

=  pointing out of the page (a counterclockwise torque opposing the 

clockwise rotation). 

                   c)  If page,intoandckwisecounterclo →→ Bω  

            →⇒ I flow inward radially since Bv
r

×  points inward. 

            →τ  clockwise (again opposing the motion); 

If →ω counterclockwise and →B  out of the page 

→⇒ I  radially outward 

    →τ clockwise (opposing the motion) 

The magnitudes of τandI  are the same as in part (a). 

 
 



Capítulo 30 



30.1: a) V,0.270/s)A830(H)1025.3()/(
4

12 =×== −
dtdiMε  and is constant. 

 b) If the second coil has the same changing current, then the induced voltage is the 

same and V.270.01 =ε  

 

 

30.2: For a toroidal solenoid, .2/and,/ 110B12 22
rAi�i�M B πµ=ΦΦ=  

So, .2/210 r�A�M πµ=  

 

 

30.3: a) H.1.96A)(6.52/Wb)0320.0()400(/ 12 2
==Φ= i�M B  

 b) When Wb.107.11(700)/H)(1.96A)54.2(/A,54.2 3

12B2 1

−×===Φ= �Mii  

 

 

30.4: a) H.106.82s)/A0.242(/V1065.1)/(/ 33

2

−− ×=−×== dtdiM ε  

 b) A,20.1,25 12 == i�  

   
Wb.103.27
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4

3

212

−

−
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×==Φ⇒ �MiB
 

 c) mV.2.45s)/A(0.360H)1082.6(/ands/A360.0/ 3

212 =×=== −dtMdidtdi ε  

 

 

30.5: Ωs.1A)s/(V1AC)s/(J1A/J1A/Nm1A/Tm1A/Wb1H1 222 =======  

 

 

30.6: For a toroidal solenoid, )./(// dtdii�L B ε=Φ=  So solving for �  we have: 

 

 

 

 

 

turns.238
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dtdii� Bε

30.7: a) V.104.68s)/A (0.0180H)260.0()/(
3

1

−×=== dtdiLε  

 b) Terminal a is at a higher potential since the coil pushes current through from b to 

a and if replaced by a battery it would have the +  terminal at .a  
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30.9: For a long, straight solenoid: 

.//and/
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00 lA�µLl�iAµi�L BB =⇒=ΦΦ=  

 

 

30.10: a) Note that points a and b  are reversed from that of figure 30.6. Thus, according 

to Equation 30.8, s./A00.4
H0.260

V04.1 −=== −−
L

VV

dt
di ab  Thus, the current is decreasing. 

    b) From above we have that .)s/A00.4( dtdi −=  After integrating both sides of this 

expression with respect to ,t  we obtain 

A.4.00s)(2.00A/s)(4.00A)0.12(s)/A00.4( =−=⇒∆−=∆ iti  

 

 

30.11: a) H.0.250A/s)(0.0640/V)0160.0()/(/ === dtdiL ε  

    b) Wb.104.50(400)/H)(0.250A)720.0(/ 4−×===Φ �iLB  

 

 

30.12: a) J.540.02/A)(0.300H)0.12(
2

1 22 === LIU  

    b) W.2.16)180(A)300.0( 22 =Ω== RIP  

 c) No. Magnetic energy and thermal energy are independent. As long as the current is 

constant, constant.=U  
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30.14: a) J.101.73h)/s3600h/day(24W)200( 7×=×== PtU  
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30.15: Starting with Eq. (30.9), follow exactly the same steps as in the text except that 

the magnetic permeability µ  is used in place of .0µ  
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30.20: (a) mA,30A030.0
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30.21: a) RLeRi t /),1(/ / =−= − τε τ  
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30.23: a) A.250.0
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30.24: a) .V60and00At ==⇒= bcab vvt   

 b) .0andV60As →→⇒∞→ bcab vvt  

 c) .V0.24V0.36V0.60andV0.36A150.0When =−===⇒= bcab viRvi  
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    d) Note that if we expand the exponential in part (b), then parts (b) and (c) add to 

give part (a),  and the total power delivered is dissipated in the resistor and inductor. 

 

 



30.26: When switch 1 is closed and switch 2 is open: 
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30.27: Units of ==ΩΩ=Ω= s/)s(/H/ RL units of time. 
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30.29: a) )F1000.6()H50.1(22
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Positive charge flowing away from plate which had positive charge at .0=t  
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30.30: (a) Energy conservation says (max) = (max) CL UU   
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The charge on the capacitor is zero because all the energy is in the inductor. 
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30.31: F0.30
V1029.4

C10150
3

9

µ=
×

×
==

−

−

V

Q
C  

 For an L-C circuit, LCω 1= and LCωπT π22 ==  

 mH601.0
)2( 2

==
C

T
L

π
 

 



30.32: rad/s1917
)F1020.3()H0850.0(

1

6
=

×
=

−
ω  

    a) C1043.4
srad1917

A1050.8 7
4

max
maxmaxmax

−
−

×=
×

==⇒=
ω

i
QωQi  

    b) From Eq. 31.26 

2

1

4
2722

s1917

A1000.5
)C1043.4( 







 ×
−×=−=

−

−
−LCiQq   

                 .C1058.3 7−×=   

 

30.33: a) )sA80.2()F1060.3()H640.0(0
1 6

2

2
−×==⇒=+

dt

di
LCqq

LCdt

qd
 

                                                    C.1045.6 6−×=  

    b) .V36.2
F1060.3

C1050.8
6

6

=
×

×
==

−

−

C

q
ε  

 

 

30.34: a) .max
max

maxmaxmax LCi
ω

i
QωQi ==⇒=  

                       
J450.0

)F1050.2(2

)C1050.1(

2

.C1050.1)F1050.2()H400.0()A50.1(

10

25
max
2

max

510

max

=
×

×
==⇒

×=×=⇒

−

−

−−

C

Q
U

Q

 

    b) 14

10
s1018.3

)F1050.2()H400.0(

11

2

2
2 −

−
×=

×
===

πππ
ω

LC
f  

 (must double the frequency since it takes the required value twice per period). 
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30.43: a)  

 
    b) Since the voltage is determined by the derivative of the current, the V versus t graph 

is indeed proportional to the derivative of the current graph. 
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    b) ,0;V4.23max == iε since the emf and current are °90 out of phase. 

    c) ,0;A124.0max == εi since the emf and current are °90  out of phase. 
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The energy dissipated over the inductor (part (a)), plus the energy lost over the resistor 

(part (c)), sums to the total energy output (part (b)). 
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30.57: Multiplying Eq. (30.27) by i, yields: 

  

.0

2

1

2

1
R

2
2222

=++=









+







+=++=−+

CLR PPP

C

q

dt

d
Li

dt

d
Ri

dt

dq

C

q

dt

di
LiRii

C

q

dt

di
Lii

 

That is, the rate of energy dissipation throughout the circuit must balance over all of the 

circuit elements. 
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30.61: The energy density in the sunspot is ./mJ10366.62/ 34
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30.62: (a) The voltage behaves the same as the current. Since ,   iVR ∝ the scope must be 

across the Ω150 resistor. 

    (b) From the graph, as ,V25, →∞→ RVt so there is no voltage drop across the 

inductor, so its internal resistance must be zero. 
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    (c) Scope across the inductor: 

 
 



30.63: a) In the R-L circuit the voltage across the resistor starts at zero and increases to 
the battery voltage. The voltage across the solenoid (inductor) starts at the battery voltage 

and decreases to zero. In the graph, the voltage drops, so the oscilloscope is across the 
solenoid. 

    b) At ∞→t the current in the circuit approaches its final, constant value. The voltage 

doesn’t go to zero because the solenoid has some resistance .LR The final voltage across 

the solenoid is ,LIR where I is the final current in the circuit. 

    c) The emf of the battery is the initial voltage across the inductor, 50 V. Just after the 
switch is closed, the current is zero and there is no voltage drop across any of the 

resistance in the circuit. 
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From the graph, LV  has this value when t = 3.0 ms (read approximately from the 

graph), so .mH43)3.14()ms0.3(Thenms.0.3/ tot =Ω=== LRLτ  

 



30.64: (a) Initially the inductor blocks current through it, so the simplified equivalent 

circuit is 

  A333.0
150

V50
=

Ω
==

R

ε
i  

0,A333.0

resistor)50withparallelin(inductorV7.16

it.throughflowscurrentnosince0

V16.7A)333.0()50(

V33.3A)333.0()100(

231

42
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Ω==

=
=Ω=
=Ω=

AAA

VV

V

V
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(b) Long after S is closed, steady state is reached, so the inductor has no potential 

drop across it. Simplified circuit becomes 

 

A230.0
50

V5.11

A153.0
75

V5.11
A,385.0

V11.5V38.5V50

0;V5.38)A385.0()100(

A385.0
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ii
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Rεi

 

 



30.65:    a) Just after the switch is closed the voltage 5V  across the capacitor is zero and there 

is also no current through the inductor, so ,.0 54323 VVVVV ==+=  and since 

243 and,0and0 VVV ==  are also zero. 04 =V  means 3V  reads zero. 

1V  then must equal 40.0 V, and this means the current read by 1A  is 

A.0.800)(50.0/V)0. =Ω  

 A.800.0 so 0but, 14321432 =====++ AAAAAAAA  

 A;800.041 == AA  all other ammeters read zero. 

 V0.401 =V  and all other voltmeters read zero. 

b) After a long time the capacitor is fully charged so .04 =A  The current through 

the inductor isn’t changing, so .02 =V  The currents can be calculated from the equivalent 

circuit that replaces the inductor by a short-circuit.: 

 

V0.24)0.50(

A480.0readsA;480.0)33.83(/V)0.40(

1

1

=Ω=

=Ω=

IV

AI
 

The voltage across each parallel branch is V16.0V4.02V0.40 =−  

V0.16,0 5432 ==== VVVV  

.thatNote

zero.readsA.320.0readsmeansV0.16.A160.0readsmeansV0.16

132

43423

AAA

AAVAV

=+

==

C192)V(16.0F)0.12(soV0.16)c 5 µµ ==== CVQV  

d) At t = 0 and .0, 2 =∞→ Vt  As the current in this branch increases from zero to 

0.160 A the voltage 2V  reflects the rate of change of current. 



30.66: (a) Initially the capacitor behaves like a short circuit and the inductor like an open 

circuit. The simplified circuit becomes 

 A500.0
150

V75
=

Ω
==

R
i

ε
 

0A,500.0

V0.50parallel)(in

V50.0A)50.0()100(,0

V25.0A)50.0()50(

231

4
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=Ω==
=Ω==

AAA

VV

VV

RiV

2

 

(b) Long after S is closed, capacitor stops all current. Circuit becomes 

  V0.753 =V  and all other meters read zero. 

(c) nC,5630V)(75nF)75( === CVq  long after S is closed. 

 

 



30.67:    a) Just after the switch is closed there is no current through either inductor and 

they act like breaks in the circuit. The current is the same through the ΩΩ 15.0and0.40  

resistors and is equal to A;455.0A.455.0)0.150.40(V)0.25( 41 ===Ω+Ω AA  

.032 == AA  

    b) After a long time the currents are constant, there is no voltage across either inductor, 

and each inductor can be treated as a short-circuit . The circuit is equivalent to: 

 

 A585.0)73.42(V)0.25( =Ω=I  

A.0.585reads1A  The voltage across each parallel branch is =Ω− )(40.0A)(0.585V0.25

A.107.0)0.15(V)60.1(reads

 A.160.0)0.10V)60.1(readsA.320.0)0.5(V)60.1(readsV.1.60 432

=Ω

=Ω=Ω AAA
 

 

30.68: (a) ,s50.0sincems40.0
25

mH10
τRLτ >>=== Ω  steady state has been reached, for 

all practical purposes. 

A00.225V50 =Ω== Ri ε  

The upper limit of the energy that the capacitor can get is the energy stored in the 

inductor initially. 

C1090.0)F1020()H1010()A00.2(

2

1

2
363

max

0max

2

0

2

max

−−− ×=××=

=→=→=

Q

LCiQLi
C

Q
UU LC

 

    (b) Eventually all the energy in the inductor is dissipated as heat in the resistor. 

J100.2

)A00.2()H1010(
2

1

2

1

2

232

0

−

−

×=

×=== LiUU LR  



30.69: a) At ,0=t all the current passes through the resistor ,1R so the voltage abv is the 

total voltage of 60.0 V. 

 

    b) Point a is at a higher potential than point .b  c) V0.60=cdv since there is no 

current through .2R  

    d) Point c is at a higher potential than point .b  

    e) After a long time, the switch is opened, and the inductor initially maintains the 

current of .A40.2
25.0

V0.60

2
2

=
Ω

==
R

iR
ε

 Therefore the potential between a and b is 

.V0.96)0.40()A40.2(R1 −=Ω−=−= ivab  

    f) Point b is at a higher potential than point a. 

    g) V156)2540()A40.2()( 21 −=Ω+Ω−=+−= RRivcd  

    h) Point d is at a higher potential than point c. 

 

 

30.70: a) Switch is closed, then at some later time: 

 .V0.15)A/s0.50()H300.0(A/s0.50 ===⇒=
dt

di
Lv

dt

di
cd  

The top circuit loop: 60.0 .A50.1
0.40

V0.60
V 111 =

Ω
=⇒= iRi  

The bottom loop: A.80.1
0.25

V45.0
0V0.15V60 222 =

Ω
=⇒=−− iRi  

    b) After a long time: ,A40.2
0.25

V0.60
2 =

Ω
=i and immediately when the switch is 

opened, the inductor maintains this current, so .A40.221 == ii  

 

 



30.71: a) Immediately after 1S  is closed, ,V0.36and,0,00 === cbac vvi  since the 

inductor stops the current flow. 

 b) After a long time, =0i A180.0
15050

V0.36

0

=
Ω+Ω

=
+ RR

ε
, 

 .V0.27V00.9V0.36and,V00.9)50()A18.0(00 =−==Ω== cbac vRiv  

 c) ),1()A180.0()()1()( )s50()(

total

1
total ttLR

etie
R

ti
−−− −=⇒−=

ε
 

      
( )

( ) ( ).3)V00.9(1)V00.9(V0.36)()(v

and1)V00.9()()(

)50()50(

0

)s50(

0

11

1

tsts
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t
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eeRtiεt

eRtitv
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−

−−

−

+=−−=−=

−==
 

Below are the graphs of current and voltage found above. 

 

 
 

 

 

 



30.72: a) Immediately after 2S is closed, the inductor maintains the current A180.0=i  

through .R  The Kirchoff’s Rules around the outside of the circuit yield: 

 
.0andV0.36)V50()A72.0(,A072.0

Ω50

V36

0)50()150()18.0()150()18.0(V0.36

0

000

=====⇒

=−−+=−−+

cbac

L

vvi

iRiiRεε

 

    b) After a long time, ,V0.36=acv  and .0=cbv  Thus 

    ,A720.0
50

V0.36

0

0 =
Ω

==
R

ε
i  

A720.0and,0
2
== sR ii  

    c) and,)A180.0()()(,A720.0 )s5.12()(

total

0

1 t

R

tLR

R etie
R

ε
tii

−−− =⇒==  

         ( )tt

s eeAti )s5.12()s5.12( 11

2
4)A180.0()180.0()A720.0()(

−− −− −=−=  

Below are the graphs of currents found above. 

 

 
 

 



30.73: a) Just after the switch is closed there is no current in the inductors. There is no 

current in the resistors so there is no voltage drop across either resistor. A reads zero and 

V  reads 20.0 V. 

       b) After a long time the currents are no longer changing, there is no voltage across 

the inductors, and the inductors can be replaced by short-circuits. The circuit becomes 

equivalent to 

 

  A267.0)0.75()V0.20( =Ω=a
I  

 

The voltage between points a and b is zero, so the voltmeter reads zero. 

       c) Use the results of problem 30.49 to combine the inductor network into its 

equivalent: 

 
 

Ω= 0.75R  is the equivalent resistance. 

      

V0.9VV0.20so0V0.20

V0.11)0.75)(A147.0(

A147.0so,ms115.0,0.75,0.20

ms144.0)(75.0mH)8.10(/with),1)((says Eq.(30.14)
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30.74: (a) Steady state: A600.0
125

V0.75
=

Ω
==

R
i

ε
 

    (b) Equivalent circuit: 
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 Energy conservation: 
2
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2
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q
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 )F106.14()H1020()A600.0( 63

0

−− ××== LCiq  

               C41024.3 −×=  
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30.75: a) Using Kirchhoff’s Rules: and,0
1

111
R

ε
iRiε =⇒=−  

 ).1(0
)(

2

222
2 2 tLR

e
R

iRi
dt

di
L

−−=⇒=−−
ε

ε  

    b) After a long time, .andstill,
2

2

1

1
R

ε
i

R

ε
i ==   

    c) After the switch is opened, ,
))((

21
21

2

tLRR
e

R

ε
ii

+−==  and the current drops off. 

    d) A 40-W light bulb implies .360
W40

V)(120 22

Ω===
P

V
R If the switch is opened, 

and the current is to fall from 0.600A to 0.150 A in 0.0800 s, 

then:
)s0800.0)(H0.22)360(())((

2
221 )A600.0(A150.0)A600.0( RtLRR eei +Ω−+− =⇒=  

 

.V7.12)2.21)(A600.0(

0.21360)00.4ln(
0800.0

H0.22

22

22

=Ω==⇒

Ω=⇒+Ω=⇒

Riε

RR
s  

    e) Before the switch is opened, A0354.0
360

V7.12

1

0 =
Ω

==
R

i
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30.76: Series: .eq
2

12
1

21
2

2
1

1
dt

di
L

dt

di
M

dt

di
M

dt

di
L

dt

di
L ≡+++  

But .and 2112
21

21 MMM
dt

di

dt

di

dt

di
iii ≡=+=⇒+=  

.andwith

,and
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To simplify the algebra let . and ,, 21

dt

di
C

dt

di
B

dt

di
A ===  

So .,, eq2eq1 CBACLMABLCLMBAL =+=+=+  

Now solve for .oftermsinand CBA   

 

.
)2(

)(
)()2(

0)()()(

0)()()(

.using0)()(

21

1
121

211

21

21

C
LLM

LM
BCLMBLLM

BLMBMLCML

BLMBCML

BCABLMAML

−−
−

=⇒−=−−⇒

=−+−−−⇒

=−+−−⇒

−==−+−⇒

 

But ,
)2(

)2(

)2(

)(

21

121

21

1 C
LLM

LMLLM

LLM

CLM
CBCA

−−

+−−−
=

−−

−
−=−=  

or .
2 21

2 C
LLM

LM
A

−−

−
= Substitute A in B back into original equation. 
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30.77: a) Using Kirchhoff’s Rules on the top and bottom branches of the circuit: 

).1(

)00

).1(0

)/1(

0

)/1(

2

2
0
22

)1(

2

2
2

2
22

22

)(

1

1
1

11

22

2

1

tCR

t

tCR
t

tCR

tLR

eεCCeR
R

ε
tdiq

e
R

ε
i

C

i
R

dt

di

C

q
Riε

e
R

ε
i

dt

di
LRiε

−′−

−

−

−=−=′=⇒

=⇒=−−⇒=−−

−=⇒=−−

∫

 

 

    b) .A1060.9
5000

V0.48
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    c) As .0,A92.1
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ε
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 A good definition of a “long time” is many time constants later. 
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 Expanding the exponentials like :findwe,
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    e) At .A104.9)1(
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=−=×= ttLR ee
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    f) We want to know when the current is half its final value. We note that the current 

2i is very small to begin with, and just gets smaller, so we ignore it and find: 
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R
ii −− −=−===

ε
 

         s22.0)5.0ln(
25

H0.8
)5.0ln(500.0

1

)( 1 =
Ω

==⇒=⇒ −

R

L
te

tLR
 

 

 



30.78: a) Using Kirchoff’s Rules on the left and right branches: 

 Left: .)(0)( 1
21

1
21 ε

dt

di
LiiR

dt

di
LRiiε =++⇒=−+−  

 Right: .)(0)( 2
21

2
21 ε

C

q
iiR

C

q
Riiε =++⇒=−+−  

    b) Initially, with the switch just closed, .0and,0 221 === q
R

ε
ii  

    c) The substitution of the solutions into the circuit equations to show that they satisfy 

the equations is a somewhat tedious exercise in bookkeeping that is left to the reader. 

  We will show that the initial conditions are satisfied: 
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    d) When does 2i  first equal zero? rad/s625
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30.79: a) =+−=+==Φ )())(( 00
AirAir dW
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ABABBA LLB  

])[(0 KddD�iµ +−  
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b) Using 1+= mK χ  we can find the inductance for any height .10 






 +=
D

d
LL mχ  

__________________________________________________________________ 

Height of Fluid Inductance of Liquid Oxygen  Inductance of Mercury 

     4Dd =    0.63024 H    0.63000 H 

     2Dd =    0.63048 H    0.62999 H 

     43Dd =    0.63072 H    0.62999 H 

     Dd =    0.63096 H    0.62998 H 

__________________________________________________________________ 

Where are used the values .5

m

3

2 109.2 (Hg)and1052.1)O( −− ×−=×= χχm  

 d) The volume gauge is much better for the liquid oxygen than the mercury because 

there is an easily detectable spread of values for the liquid oxygen, but not for the mercury.

     

 



Capítulo 31 



31.1: a) V.8.31
2

V0.45

2
rms ===

V
V  

 b) Since the voltage is sinusoidal, the average is zero. 

 

31.2: a) A.97.2)A10.2(22 rms === II  

 b) A.89.1)A97.2(
22

rav ===
ππ

II  

 c) The root-mean-square voltage is always greater than the rectified average, because 

squaring the current before averaging, then square-rooting to get the root-mean-square 

value will always give a larger value than just averaging. 

 

31.3: a) A.120.0
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31.4: a) A.0132.0)F1020.2()srad100()V0.60( 6 =×==⇒== −CVωI
ωC

I
IXV C  

 b) A.132.0)F1020.2()srad10000()V0.60( 6 =×== −CVωI  

 c) A.32.1)F1020.2()srad000,10()V0.60( 6 =×== −CVωI  

 d) 

 
 

 

31.5: a) .1508)H00.3()Hz80(22 Ω==== ππfLωLX L  
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31.6: a) .1700Hz,600If.170H)Hz)(0.45060(22 Ω==Ω==== LL XfππfLωLX   
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31.7: F.1032.1
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31.8: Hz.1063.1
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31.9: a) ).)srad720((cos)A0253.0(
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 b) .180)H250.0()srad720( Ω=== ωLX L  
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31.10: a) .1736
)F1080.4()srad120(

11
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Ω=
×

== −ωC
X C  

 b) To find the voltage across the resistor we need to know the current, which can be 

found from the capacitor (remembering that it is out of phase by o90  from the capacitor’s 

voltage). 

 

).)srad012(cos(V)10.1())srad120(cos()250()A1038.4(

))sradcos((120A)1038.4(
1736

))srad120cos(()V60.7()(cos

3

3

ttiRv

t
t

X

ωtv

X

v
i

R

CC

C

=Ω×==⇒

×=
Ω

===

−

−

 

 

 

31.11: a) If .0
111

0 =−=⇒−=⇒==
LCCLC

L
X

ωC
ωLX

LC
ωω  

 b) When .00 >⇒> Xωω  

 c) When .00 <⇒> Xωω  

 d) The graph of X against ω  is on the following page. 

 

 
 
 



31.12: a)  .224H))400.0(rad/s)250(()200()( 2222 Ω=+Ω=+= ωLRZ  

    b) A134.0
224

V0.30
=

Ω
==

Z

V
I  

    c) V;8.26)200()A134.0( =Ω== IRVR  

        H)400.0(rad/s)250(A)134.0(L == LIωV  

 V.4.13=⇒ LV  

 d) ,6.26
V8.26

V4.13
arctanarctan o=








=








=

R

L

v

v
φ  and the voltage leads the current. 

 e) 

 

 
 

 

31.13: a) 
26222 ))F1000.6(rad/s)250/((1)200()/1( −×+Ω=+= ωCRZ  

                 .696Ω=  

 b) A.0431.0
696

V0.30
=

Ω
==

Z

V
I  

 c) 
V.7.28

)F1000.6()rad/s250(

)A0431.0(

V;62.8)200()A0431.0(

6C =
×

==

=Ω==

−ωC

I
V

IRVR

 

 d) ,3.73
V62.8

V7.28
arctanarctan °−=








=








=

R

C

V

V
φ  and the voltage lags the current. 

  



31.14: a) 

.567
)F1000.6()ad/s250(

1
)H400.0()rad/s250()/1(

6
Ω=

×
−=−= −ωCωLZ  

 b) A.0529.0
567

V0.30
=

Ω
==

Z

V
I  

 c) V29.5)H400.0()rad/s250()0529.0( === LIωVC   

         V.3.35
F)10(6.00rad/s)250(

)A0529.0(
6-

=
×

==
ωC

I
VC  

 d) ,0.90)(arctanarctan °−=−∞=






 −
=

R

CL

V

VV
φ  and the voltage lags the current. 

 e) 

 

 
 

 
31.15: a) 

 

 
 

 b) The different voltages are: 

.Note.V85.12,V60.7,V5.20:ms20At

90250cos()V4.13(),cos(250V)8.26(),26.6cos(250V)0.30(

vvvvvvt

tvtvtv

LRLR

LR

=+====

+==°+=

 

 c) .Note.V29.7,V49.22,V2.15:ms40At vvvvvvt LRL =+=−=−==  Be 

careful with radians vs. degrees in above expressions! 

 

 



31.16: a)  

 

 
 

 b) The different voltage are: 

.Note.V5.27,V45.2,V1.25:ms20At

)90250cos()V7.28(),250cos()V62.8(),3.73250cos()V0.30(

vvvvvvt

tvtvtv

CRCR

CR

=+−==−==

°−==°−=
 

c) .NoteV.6.15,V23.7,V9.22:ms40At vvvvvvt CRCR =+−=−=−==  Careful 

with radians vs. degrees! 

 

 

31.17: a) 
22 )/1( ωCωLRZ −+=  

 
262 )))F1000.6()rad/s250((/1)H0400.0()rad/s250(()200( −×−+Ω=⇒ Z  

      .601Ω=  

 b) A.0499.0
601

V30
=

Ω
==

Z

V
I  

 c) ,6.70
200

667100
arctan

/1
arctan o−=









Ω
Ω−Ω

=






 −
=

R

ωCωL
φ  and the voltage lags 

the current. 

 d) V;98.9)200()A0499.0( =Ω== IRVR  

         

 ;V99.4)H400.0)(srad250()A0499.0( === LIωVL  

 V.3.33
)F1000.6()rad/s250(

)A0499.0(
6

=
×

== −ωC

I
VC  

 e) Because of the charge-storing nature of the capacitor, its voltage will tag the source 

voltage. That is, the capacitor’s voltage will peak after the source voltage. 

 

 

 



31.18: a)  

 

 
 

 The different voltages plotted above are: 

 
).90250cos()V3.33()90250cos()V99.4(

),250cos()V98.9(),6.70250cos()V30(

°−=°+=

=°−=

tvtv

tvtv

CL

R
 

 b) .V9.31,V79.4,V83.2,V3.24:ms20At −===−== CLR vvvvt  

 c) V.1.18,V71.2,V37.8,V8.23:ms40At −==−=−== CLR vvvvt  

 In both parts (b) and (c), note that the voltage equals the sum of the other voltages at 

the given instant. Be careful with degrees vs. radians! 

 

 
31.19: a) Current largest at the resonance frequency 

mA0.15/.andresonance,At.Hz113
2

1
0 ====== RVIRZXX

LCπ
f CL  

 b) Ω==Ω== 160;500/1 ωLXωCX LC  

 

current.thelagsvoltagesourceso

mA61.7/

5.394)500160()200()(

C

2222

L

CL

XX

ZVI

XXRZ

>

==

Ω=Ω−Ω+Ω=−+=

 

 

 

31.20: Using ,
)/(1

arctan and 
1

2

2 






 −
=







 −+=
R

ωCωL

ωC
ωLRZ φ  along with the 

values :F1000.6andH,400.0,200 6−×==Ω= CLR  

 a) ;4.49,307:rad/s1000 °=Ω== φZω  

        
.1.75,779:rad/s200

;7.10,204:rad/s600

°−=Ω==

°−=Ω==

φ
φ

Zω

Zω
 

 b) The current increases at first, then decreases again since .
Z

V
I =  

 c) The phase angle was calculated in part (a) for all frequencies. 



31.21: 
222
)( CLR VVVV −+=  

 V0.50)V0.90V0.50()V0.30( 22 =−+=V  

 

 

 

31.22: a) First, let us find the phase angle between the voltage and the current 

−=⇒
Ω

−××
=

−
=

−××

−

65
350

)H100.20()Hz1025.1(2
1

)tan(
)C10140()Hz1025.1(2

133
93

φ
π

φ π

R

ωC
ωL

The impedance of the circuit is 

 .830)752()350()
1

( 2222 Ω=Ω−+=Ω=−+=
ωC

ωLRZ   

The average power provided by the supply is then 

W32.7)1.65cos(
830

)V120(
)cos()cos(

22

rms
rmsrms =°−

Ω
=== φφ

Z

V
IVP   

b) The average power dissipated by the resistor is ( ) W32.7)350(
2

 830

V1202

rms =Ω== ΩRIPR  

 

 

31.23: a) Using the phasor diagram at right we can see: 

 .cos
222 Z

R

XXRI

IR

CL

=
−+

=φ  

 

    b) φφ coscos
2

1
2

rms

2

Z

V

Z

V
Pav ==  

 .2

rms

2

rms RI
Z

R

Z

V
Pav ==⇒  

 

 



31.24:  
Z

R

Z

V

Z

V
Pav

2

rms

2

rms cos == φ  

W.5.43)0.75(
)105(

)V0.80(
2

2

2

2

rms =Ω
Ω

== R
Z

V
 

 

 

31.25: a) 
2

2 1

cos








 −+

==

ωC
ωLR

R

Z

R
φ  

                               

.8.45)698.0(cos

698.0
344

240

F)1030.7()Hz400(2

1
)H120.0()Hz400(2)240(

240

1

2

6

2

°==⇒

=
Ω
Ω

=










×
−+Ω

Ω
=

−

−

φ

π
π

 

 

    b) .344),(From Ω=Za   

    c) V.155Ω)(344A)450.0(rmsrms === ZIV   

    d) W.7.48)698.0()A450.0()V155(cosrmsrms === φIVPav   

    e) W.7.48== avR PP   

    f) Zero. 

    g) Zero. 

For pure capacitors and inductors there is no average energy flow. 

 

 

31.26: a) The power factor equals: 

 .181.0
))H20.5()s/rad60)2((()360(

)360(

)(
cos

2222
=

+Ω

Ω
=

+
==

πωLR

R

Z

R
φ  

 b)

.W62.2)181.0(
))H(5.20s)/rad60)2((()360(

)V240(

2

1
cos

2

1

22

22

=
+Ω

==
πZ

V
Pav φ    

 



31.27: a) At the resonance frequency, .RZ =  

 

V1290

;2582/)(/1

V1290;2582//1(

V150b)

V150Ω)(300A)500.0(

==

Ω===

==Ω====

==

====

CC

C

LLL

R

IXV

CLωCX

IXVCLLCLωLX

IRV

IRIZV

 

 c) resonance.at1cosandsince,cos
2

2
1

2
1 ==== φφ IRVRIIVPav  

           W5.37)300()A500.0( 2

2
1 =Ω=avP  

 

 
31.28: a) The amplitude of the current is given by 

  
212
)(

ωC
ωLR

V
I

−+
=  

Thus, the current will have a maximum amplitude when 

.F4.44
)H00.9()rad/s0.50(

111
222 µ

ωω
===⇒=

LC
CωL  

 b) With the capacitance calculated above we find that RZ = , and the amplitude 

of the current is A.300.0
400

120 === Ω
V

R
VI Thus, the amplitude of the voltage across the 

inductor is .V135H)(9.00s)/rad(50.0A)300.0()( === ωLIV  

 

 
31.29: a) At resonance, the power factor is equal to one, because the impedance of the 

circuit is exactly equal to the resistance, so .1=
Z

R
 

 b) Average power: 
( )

W75
150

V150

2

1
2

rms
2

=
Ω

==
R

V
Pav . 

 c) If the capacitor is changed, and then resonance is again attained, the power 

factor again equals one. The average power still has no dependence on the capacitor, so 

W75=avP  again. 

 

31.30: a) 
( ) ( )

srad104.15
F1020.1H350.0

11 3

8
0 ×=

×
==

−LC
ω . 

 b) ( ) ( ) ( ) A102.0F101.20srad104.15V550 83 =××==⇒= −ωCVI
ωC

I
V CC   

  ( ) ( ) ( ) V.8.40400A102.0max =Ω==⇒ IRV source  

 

 



31.31: a) At resonance: 

   
( ) ( )F1000.6H400.0

11

6
0 −×

==
LC

ω  

        Hz103srad5.6450 ⇒=⇒ω . 

    b) 

 

 
 

   c) ( ) Ω
=======
200

V2.21

Z
,V2.21

2

V0.30

2

rmsrms
rmsrms1

R

VV
I

V
VV source  

          A106.0=  

                

( ) ( ) ( )
( )

( ) ( ) ,V4.27
F1000.6srad645.5

A106.0

.V4.27H400.0srad5.645A106.0

26

0

rms
3

0rms2

V
Cω

I
V

LωIV

==
×

==

===

−

 

      04 =V , since the capacitor and inductor’s voltages cancel each other. 

      ( ) V2.21
2

V30

2
rms5 ===

V
VV source . 

d) If the resistance is changed, that has no affect upon the resonance frequency: 

 Hz103srad5.6450 ⇒=ω  

      e) A212.0
100

V2.21rmsrms
rms =

Ω
===

R

V

Z

V
I . 

 

31.32: a) 
( )( )

srad945
F1000.4H280.0

11

6
0 =

×
==

−LC
ω . 

 b) I = 1.20 A at resonance, so: Ω==== 6.70
A1.70

V120

I

V
ZR  

 c) At resonance: 

 ( ) ( ) ( ) ( ) ( ) ( )H280.0srad945A70.1,V120 peakpeakpeak ==== LIωCVLVRV  

              V.450=  

 



31.33: a) 10
12

120

2

1 ==
�

�
. 

 b) A2.40
Ω5.00

V12.0rms

rms ===
R

V
I  

 

 c) ( ) ( ) W28.8V12.0A2.40rmsrms === VIPav . 

 d) 
( )

Ω=== 500
W28.8

V120
2

rms
2

P

V
R , and note that this is the same as 

   ( ) ( ) Ω=






Ω=







Ω 500

0.12

120
00.500.5

22

2

1

�

�
. 

 

31.34: a) .108
120

13000

1

2 ==
�

�
 

 b) ( ) ( ) W5.110V13000A00850.022 === VIP . 

 

 c) ( ) ( ) A918.0108A0.00850
1

2
21 ===
�

�
II . 

 

 

31.35: a) .40
00.8

108.12 3

2

1

2

1

2

2

1
21 =

Ω
Ω×

==⇒







=

R

R

�

�

�

�
RR  

 b) ( ) V50.1
40

1
V0.60

1

2
12 ==








=

�

�
VV  

 

 

31.36: a) 
22

tweeter )1( ωCRZ +=   

 b) ( )22

woofer ωLRZ +=  

 c) If woofertweeter ZZ = , then the current splits evenly through each branch. 

 d) At the crossover point, where currents are equal: 

   ( ) ( )
LC

ωωLRωCR
1

1
2222 =⇒+=+ . 

 

 



31.37: φ
π

φφ tan
2

tanarctan
f

R

ω

R
L

R

ωL
==⇒







=  

    
( )

( ) H.124.03.52tan
Hz802

0.48
=°







 Ω
=

π
 

 

 

31.38: a) If ( )22 1:srad200 ωCωLRZω −+==  

 

( ) ( ) ( ) ( ) ( )( )( )
.A0272.0

2

1
A0385.0

779

V30

.779F1000.6srad2001H400.0srad200200

rms

262

==⇒=
Ω

==⇒

Ω=×−+Ω=⇒ −

I
Z

V
I

Z

 

 So, ( ) ( ) ,V44.5200A0.0272rms1 =Ω== RIV  

 

( ) ( ) ( )
( )

( ) ( )
.V21.2Vand,V5.20V18.2V7.22

,V7.22
F1000.6srad200

A0272.0

,V18.2H400.0srad200A0272.0

2

0.30
rms5234

6

rms
rms3

rmsrms2

====−=−=

=
×

===

====

−

εVVVV

ωC

I
XIV

ωLIXIV

C

L

 

b) If s,rad1000=ω  using the same steps as above in part  

(a): .V2.21,V1.16,V5.11,V6.27,V8.13,307 54321 =====Ω= VVVVVZ  

 

 

31.39: a) ( ) .
ω

π
tt

ω

π
t,

ω

π
tπnωtI =−⇒==⇒+== 1221rav

2

3

2
21when0  

 b) ( ) ( ) ( ) ( )[ ]∫∫ =−=−===
2

1

2

1

2

1

,
22

2sin23sinsincos
t

t

t

t

t

t ω

I

ω

I
ππ

ω

I
ωt

ω

I
dtωtIidt  

since it is rectified. 

 c) So, ( ) .
222

rav12rav π
I

ω

I

π

ω
I

ω

I
ttI ==⇒=−  

 

 

31.40: a) 
( )

Ω=
Ω

==⇒= 332.0
Hz1202

250

πω

XL
LωLX L   

 b) ( ) ( ) .cos,472250400
2222

Z

R
XRZ L =Ω=Ω+Ω=+= φ  

               ( ) .V668
400

W800
472rms

rms
2

=
Ω

Ω==⇒=
R

P
ZV

Z

R

Z

V
P av
av  

 

 



31.41: a) If the original voltage was lagging the circuit current, the addition of an 

inductor will help it “catch up,” since a pure LR circuit would have the voltage 

leading. This will increase the power factor, because it is largest when the current 

and voltage are in phase. 

    b) Since the voltage is lagging, the impedance is dominated by a capacitive element so 

we need an inductor such that 00 where, XXX L =  is the original capacitively dominated 

reactance (this could include inductors, but the capacitors “win”). 

  

( )

( ) ( )

( )
H132.0

Hz502

6.41
6.41

.6.412.4360

2.430.60720.0720.0

2222

0

22

=
Ω

==⇒=Ω==

Ω=Ω−Ω=−=⇒+=⇒

Ω=Ω==

πω

X
LωLXX

RZXXRZ

ZR

C
CL

C  

 

 

31.42: ( ) .0.500.80
2222

A00.3

V240

rms

rms Ω+=+=Ω=== RXRZ CI

V
 Thus, 

    ( ) ( ) .4.620.500.80
22 Ω=Ω−Ω=R . The average power supplied to this circuit is 

equal to the power dissipated by the resistor, which is  

    ( ) ( ) W5624.62A00.3
2

rms
2 =Ω== RIP  

 

31.43: a) srad63242;srad31621 00 ==== ωωLCω  

 Ω== 62.31ωLX L ;  ( ) Ω== 906.71 ωCXC  

 
( )
( ) ( ) A10108.271.23V1000.5

71.23

43

22

−− ×=Ω×==

Ω=−=−+=

ZVI

XXXXRZ CLCL   

 V;10667.1 3

CC

−×== IXV  this is the maximum voltage across the capacitor. 

 ( ) ( ) nC34.33V10667.1F100.20 36 =××== −−
CCVQ  

 b) In part (a) we found I = 0.211 mA 

c) CL XX >  and R = 0 gives that the source and inductor voltages are in phase; 

the voltage across the capacitor lags the source and inductor voltages by .180°  
 

 

31.44: a) 4X4
2

2
1

22

2

2

22

21

12 =⇒=







=








===

C

L

CL
X

X

CωCω
LωLωX , and so the 

inductor’s reactance is greater than that of the capacitor. 

b) 
9

1

9

1

9

1

3

1

3
2

2

33

31

1
3 =⇒=








=








===

C

L

CL
X

X
X

CωCω

Lω
LωX , and so the 

capacitor’s reactance is greater than that of the inductor. 

c) Since 1at ωXX CL = , that is the resonance frequency. 

 

 



31.45: ( )222222

out )( ωLR
Z

V
LωRIVVV s

LR +=+=+=  

       
( )

( )
.

ωCωLR

ωLR

V

V

s
22

22

out

1−+

+
=⇒  

 It ω  is small: 
( ) ( )

.
11

22222

out ωRC
CRω

ωR

ωCR

R

V

V

s

≈
+

=
+

≈  

 If ω  is large: 
( )
( )

.1
2

2

out =≈
ωL

ωL

V

V

s

 

 

31.46: 
( )

.
ωCωLRωCV

V

ωC

I
VV

s

C
22

out
out

1

1

−+
=⇒==  

 If ω  is large: 
( ) ( ) ( )

.
ωLCωLωCωCωLRωCV

V

s

2222

out 11

1

1
=≈

−+
=  

 If ω  is small: 
( )

.1
1

1

2

out ==≈
ωC

ωC

ωCωCV

V

s

 

 



31.47: a) 
( )

.
1

22
ωCωLR

V

Z

V
I

−+
==  

     b) 
( )

.
1

2

2

1

2

1
22

22

2

ωCωLR

RV
R

Z

V
RIPav

−+
=







==  

     c) The average power and the current amplitude are both greatest when the 

denominator is smallest, which occurs for .
LC

ω
Cω

Lω
11

0

0

0 =⇒=  

     d) 
( ) ( )

( ) ( ) ( )( )
.

F1000.51H00.2200

2200V100
262

2

−×−+Ω

Ω
=

ωω
Pav  

  
( )

.
,,ωω,

ω
Pav 222

2

0000002200040

25

−+
=⇒  

 

 
 

Note that as the angular frequency goes to zero, the power and current are zero, 

just as they are when the angular frequency goes to infinity. This graph exhibits the same 

strongly peaked nature as the light red curve in Fig. (31.15). 

 

 



31.48: a) 
( )

.
ωCωLR

LVω

Z

LVω
IωωVL

22 1−+
===  

 b) 
( )

.
ωCωLRωCωCZ

I

ωC

I
VC

22 1

1

−+
===  

 c)  

   
 

 d) When the angular frequency is zero, the inductor has zero voltage while the 

capacitor has voltage of 100 V (equal to the total source voltage). At very high 

frequencies, the capacitor voltage goes to zero, while the inductor’s voltage goes to 100 

V. At resonance, srad1000
1

0 ==
LC

ω , the two voltages are equal, and are a 

maximum, 1000 V. 

 



31.49: a) .
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    b) Using Problem (31.47a): 
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 Using Problem (31.47b): 
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    c) Below are the graphs of the magnetic and electric energies, the top two showing the 

general features, while the bottom two show the details close to angular frequency equal 

to zero. 

    d) When the angular frequency is zero, the magnetic energy stored in the inductor is 

zero, while the electric energy in the capacitor is 42CVU E = . As the frequency goes to 

infinity, the energy noted in both inductor and capacitor go to zero. The energies equal 

each other at the resonant frequency where ⋅===
2

2

0
4

and
1

R

LV
UU

LC
ω EB . 

 

 
 

 



31.50: a) Since the voltage drop between any two points must always be equal, the 

parallel LRC circuit must have equal potential drops over the capacitor, inductor 

and resistor, so vvvv CLR === . Also, the sum of currents entering any junction 

must equal the current leaving the junction. Therefore, the sum of the currents in 

the branches must equal the current through the source: CLR iiii ++= . 

 

 
 

    b) 
R
v

Ri =  is always in phase with the voltage. ωL
v

Li =  lags the voltage by °90 , and 

CvωiC =  leads the voltage by °90 . 
    c) From the diagram, 
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    d) From (c): ⋅
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31.51: a) At resonance, LC I
Lω

V
CVωI

Lω
Cω

LC
ω ===⇒=⇒=

0

0

0

00

11
 so RII =  

 and I is a minimum. 

    b) 
R

V

Z

V
Pav

22

rms cos == φ  at resonance where R < Z so power is a maximum. 

    c) At 0ωω = , I and V are in phase, so the phase angle is zero, which is the same as a 

series resonance. 

 

 



31.52: a) .A778.0
400

V311
;3112 rms =

Ω
====

R

V
IVVV R  

    b) ( ) ( ) ( ) A672.0F1000.6srad360V311 6 =×== −CVωIC . 

    c) °=







=








= 8.40

A0.778

A0.672
arctanarctan

R

C

I

I
φ , leading the voltage. 

    d) ( ) ( ) A03.1A672.0A778.0
2222 =+=+= CR III . 

    e) Leads since 0>φ . 

 

 



31.53: a) 
ωL

V
IC;VωI

R

V
I LCR === ; . 

    b)  

 

 
 

    c) 000 →∞→∞→∞→→→ LCLC I;I:ω.I;I:ω . 

 At low frequencies, the current is not changing much so the inductor’s back-emf 

doesn’t “resist.” This allows the current to pass fairly freely. However, the current in the 

capacitor goes to zero because it tends to “fill up” over the slow period, making it less 

effective at passing charge. 

 At high frequency, the induced emf in the inductor resists the violent changes and 

passes little current. The capacitor never gets a chance to fill up so passes charge freely. 
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f) At resonance  andA0.05F)1050.0)(s1000)(v100( 61 =×=== −−CVωII CL  
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31.54: a) Note that as .0
1

and →∞→∞→
Cω

Lω,ω  Thus, at high frequencies the 

current through 1R is nearly zero and the power dissipated by the circuit is 

kW.44.1
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V)240( 2

2

2

rms =
Ω

==
R

V
P  

 b) Now we let 0→ω , and so 0→Lω and .
1

∞→
Cω

Thus, at low frequencies the 

current through 2R is nearly zero and the power dissipated by the circuit is 

.kW960.0
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==
R

V
P  

 

 

31.55: Connect the source, capacitor, resistor, and inductor in series. 

 

 

31.56: a) 
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 b) .4.30)6.20()7.36( 222222 Ω=Ω−Ω=−==+= RZXXRZ LL But at 

0=φ this is resonance, so the inductive and capacitive reactances equal each other. So: 

.1005.1
)Hz)(30.40.50(2
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111 4 F
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 c)  At resonance, .W699
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31.57: a) .tantan φφ RXX
R

XX
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CL +=⇒
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 c) 
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31.58: a) For 
22 )C1L(s,rad800 ωωRZω −+==  
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 Also note .9.60
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 b) Repeating exactly the same calculations as above for 

V.400V;100A;0.200 0.;;500Z:srad1000 CR ======Ω=== LVVVVIRω φ  

 

 
 

 c)  Repeating exactly the same calculations as part (a) for 

;155;6.48;0971.0;9.60;1030  :srad1250 ====°+=Ω=== LCR VVVVVAIRZω φ
 



31.59: a) .A75.0
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 b) .160
A0.75

V120
Ω===

I

V
Z  

 c) 
22
)( CL XXRZ −+=  

. 341or 619

) 80() 160( 480 2222

ΩΩ=⇒

Ω−Ω±Ω=−±=⇒

L

CL

X

RZXX
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31.60: We want ).(01.0)(Pmaximum,)( 121 ωPωωP avavav ==  Maximum power implies 
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 This answer is very sensitive to the capacitance so you may have to carry the first part 

of the problem out to more significant figures. 

 

 
31.61: The average current is zero because the current is symmetrical above and below 

the axis. We must calculate the rms-current: 
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31.62: a) s.rad786
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    b) 
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    c) We want 
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 Substituting in the values for this problem, the equation becomes: +)24.3()( 22ω  

.01023.1)1027.4( 1262 =×+×−ω  

 Solving this quadratic equation in 2ω we find ××= 4.28orsrad1090.8 2252ω  

s.rad654 orsrad943srad10 225 =⇒ ω  

 d) (i) ,A2,30ii) sec.rad289,200.0,300
00 rms21rms =Ω==−=Ω= IRωωIR    

..ωωIRωω 882A,20,3(iii)sec.rad28 21rms21 0
=−=Ω==−   

 Width gets smaller as R gets smaller; 
0rmsI gets larger as R gets smaller. 

 

 



31.63: a) 
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 b) ωωω ∆+= 0  is small compared to .0ω  

.
1

2

2 






 −+=
ωC

ωLRZ  

.)1
11 22

22

2

−=






 − LC(ω
CωωC

ωL  

)2(

1
 Thus.

1
 so 

1
2

0

2

0

4

0

2

224

0

2

22

0
ωωωω

ωL

CωωL
C

LC
ω

∆+∆+
===  

but 2ω∆  is very small so 
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Putting this together gives 
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But 3ω∆ is much smaller than .0ω Finally 
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31.64: a) 
2

2 1







 −+

==

ωc
ωLR

V

Z

V
I at resonance ⋅==

R

V
I

ωC
ωL maxSo.

1
 

 b) .
0

maxmax C

L

R

V

CRω

V
XIV CC ===  

 c)  .0maxmax C

L

R

V
Lω

R

V
XIV LL ===  

 d) .
2

1

2

1

2

1
2

2

2

2
2

Cmaxmax R

V
L

C

L

R

V
CCVUC ===  

 e) .
2

1

2

1
2

2
2

maxmax R

V
LLIU L ==  

 

31.65: .
ω

ω
2

0=  

 a) .

C

L
R

V

Cω

Lω
R

V

Z

V
I

4

92

2

2
2

0

02 +

=









−+

==  

 b) .

4

9

2

4

9

2

220
max

C

L
R

V

C

L

C

L
R

V

Cω
IXV CC

+

=

+

==  

 c) .

4

9

2

4

92 22

0

max

C

L
R

V

C

L

C

L
R

VLω
IXV LL

+

=

+

==  

 d) .

4

9

2

2

1

2

2
2

Cmaxmax

C

L
R

LV
CVUC

+
==  

 e) .

2

92

1

2

1

2

2
2

max

C

L
R

LV
LIU L

+
==  
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31.68: a) =RV maximum when .
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 c) From Problem (31.48b), =CV maximum when .0=
dω

dVC Therefore: 
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31.69: a) From the current phasors we know that 
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Capítulo 32 



32.1: a) .s28.1
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   c) The electric field is in the x -direction, and the wave is propagating in the −z-

direction. So the magnetic field is in the −y-direction, since .BES ×∝ Thus: 
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32.5: a) y+  direction. 
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   c) Since the electric field is in the z− -direction, and the wave is propagating in the 

y+ -direction, then the magnetic field is in the x− -direction ).( BES ×∝ So: 
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32.6: a) x−−−−  direction. 
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   c) Since the magnetic field is in the y+ -direction, and the wave is propagating in the 

x− -direction, then the electric field is in the z+ -direction ).( BES ×∝  So: 
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   d) Calculation in part (c) assumes that the transmitter emits uniformly in all directions. 

 



32.14: The intensity of the electromagnetic wave is given by Eqn. 32.29: 
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32.16: a) The average power from the beam is 
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32.20: a) The electric field is in the y− -direction, and the magnetic filed is in the z+ -

direction, so .ˆˆ)ˆ(ˆˆˆ ikjBES −=×−=×=  That is, the Poynting vector is in the x− -

direction. 
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  But over one period, the cosine function averages to zero, so we have: 
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s)m100.3(

mW780 215

28

2

2
⋅×=

×
== −

c

S

dV

dp av   

   b) The momentum flow rate Pa.106.2
sm100.3

mW7801 6

8

2
−×=

×
==

c

S

dt

dp

A

av  

 

32.22: a) Absorbed light: .Pa1033.8
sm100.3

mW25001 6

8

2

rad

−×=
×

===
c

S

dt

dp

A
p av  

        .atm1023.8
atmPa10013.1

Pa1033.8 11

5

6

rad

−
−

×=
×

×
=⇒ p  

   b) Reflecting light: .Pa1067.1
sm100.3

)mW2500(221 5

8

2

rad

−×=
×

===
c

S

dt

dp

A
p av  

      10

5

5

rad 1065.1
atmPa101.013

Pa1067.1 −
−

×=
×

×
=⇒ p atm. The factor of 2 arises because the 

momentum vector totally reverses direction upon reflection. Thus the change in 

momentum is twice the original momentum. 

   c) The momentum density s.mkg1078.2
s)m100.3(

mW2500 214

28

2

2
⋅×=

×
== −

c

S

dV

dp av  

 

32.23: ======================== EBEBc
c

E
EcEES

0

0

000

0

0

02

0

02

00

0 1

µ
ε

µεµ
ε

µ
ε

µ
ε

µε

ε
 

.20

0

2

0

cE
c

EEB
ε

µµ
========  
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32.33: Using a Gaussian surface such that the front surface is ahead of the wave front (no 

electric or magnetic fields) and the back face is behind the wave front (as shown at right), 

we have: 
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 So the wave must be transverse, since there are no components of the electric or 

magnetic field in the direction of propagation. 

 
 

 

32.34: Assume .with),sin(ˆ)sin(ˆ
maxmax πφπφωω <<−+−=−=

→→

tkxBandtkxE kBjE

 Then Eq. (32.12) implies: 

 .0)cos()cos( maxmax =⇒+−+=−+⇒
∂
∂

−=
∂

∂
φφωωω tkxBtkxkEx

t

B

x

E
zy

 

 .λ
λ/2

2
maxmaxmaxmaxmaxmaxmax cBBfB

f
B

k
EBkE ====⇒=⇒

π
πω

ω  

 Similarly for Eq.(32.14) 

       .0)cos()cos( max00max00 =⇒−−=+−−⇒
∂

∂
=

∂
∂

− φωωµεφωµε tkxEtkxkB
t

E

x

B yz  

         .
1

/2

2
maxmax2max2max

00
maxmax00max E

c
E

c

fλ
E

λc

f
E

k
BEkB ====⇒=⇒

π
πωµε

ωµε  

 

 



32.35: From Eq. (32.12):
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32.37: a) The energy incident on the mirror is AtcEIAtPt 2
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   c) In one meter of the laser beam, the total energy is: 

42)(2Vol 2

tottot LDuALuuE EE π============  

 J.101.07m)/4(1.00m)1050.2()mJ1009.1(2 112336

tot

−−−−−−−−−−−− ××××====××××××××====⇒⇒⇒⇒ πE  

 



32.40: a) The change in the momentum vector determines .radp  If W  is the fraction 

absorbed, .)2()()1(inout pWppW −=−−−=−=∆
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reflected. The positive direction was chosen in the direction of reflection. p is the 

magnitude of the incoming momentum. With Eq. 32.31, and taking the average, we 

get .)2(rad C
IWp −=  Be careful not to confuse p, the momentum of the incoming wave, 

with ,radp  the radiation pressure. 
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32.41: a) At the sun’s surface: 

 

.Pa21.0
sm1000.3

mW104.6

mW104.6
m)1096.6(4

W109.3

4

8

27

rad

27

28

26

2

=
×

×
==⇒

×=
×

×
===⇒=

c

I
p

R

P

A

P
IIAP

ππ
 

Halfway out from the sun’s center, the intensity is 4 times more intense, and so is the 

radiation pressure: Pa.85.0)2/( sunrad =Rp   

 At the top of the earth’s atmosphere, the measured sunlight intensity is 

=2mW1400  

,Pa105 6−×  which is about 100,000 times less than the values above. 

   b) The gas pressure at the sun’s surface is 50,000 times greater than the radiation 

pressure, and halfway out of the sun the gas pressure is believed to be about 6 1310×  

times greater than the radiation, pressure. Therefore it is reasonable to ignore radiation 

pressure when modeling the sun’s interior structure. 
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which never happens. So the Poynting vector is always positive, which makes sense since 

the direction of wave propagation by definition is the direction of energy flow. 
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   b) The direction of the Poynting vector is radially inward, since the magnetic field is 

along the solenoid’s axis and the electric filed is circumferential. It’s magnitude 
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   d) The in-flow of electromagnetic energy through a cylindrical surface located at the 
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   e) The values from parts (c) and (d) are identical for the flow of energy, and hence we 

can consider the energy stored in a current carrying solenoid as having entered through its 

cylindrical walls while the current was attaining its steady-state value. 

 

 



32.44: a) The energy density, as a function of x, for the equations for the electrical and 

magnetic fields of Eqs. (32.34) and (32.35) is given by:  
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   c) the plots from part (a) can be interpreted as two waves passing through each other 

in opposite directions, adding constructively at certain times, and destructively at others. 
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   c) The direction of the Poynting vector ,ˆˆˆˆˆˆ ρkBES −=×=×= φφφφ  where we have used 

cylindrical coordinates, with the current in the z-direction. 

   Its magnitude is 
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This is just rate of increase in electrostatic energy U stored in the capacitor. 

 

32.47: The power from the antenna is .4
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32.49: a) Find the force on you due to the momentum carried off by the light: 

ApFcIp radrad and ==  gives cPcAIF /av==  
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The radiation force is very small. In the calculation we have ignored any other forces on 

you. 

   b) You could throw the flashlight in the direction away from the ship. By conservation 

of linear momentum you would move toward the ship with the same magnitude of 

momentum as you gave the flashlight. 
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   b) Assuming that the sun’s radiation is intercepted by the particle’s cross-section, we 

can write the force on the particle as: 

    .
4

.
4 2

22

2 cr

LR

c

R

r

L

c

IA
F ===

π
π

 

 

   c) So if the force of gravity and the force from the radiation pressure on a particle from 

the sun are equal, we can solve for the particle’s radius: 
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   d) If the particle has a radius smaller than that found in part (c), then the radiation 

pressure overcomes the gravitational force and results in an acceleration away from the 

sun, thus removing all such particles from the solar system. 

 



32.52: a) The momentum transfer is always greatest when reflecting surfaces are used 

(consider a ball colliding with a wallthe wall exerts a greater force if the ball rebounds 

rather than sticks). So in solar sailing one would want to use a reflecting sail. 

   b) The equation for repulsion comes from balancing the gravitational force and the 

force from the radiation pressure. As seen in Problem 32.51, the latter is: 
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   c) This answer is independent of the distance from the sun since both the gravitational 

force and the radiation pressure go down like one over the distance squared, and thus the 

distance cancels out of the problem. 
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   b) For a proton moving in a circle, the acceleration can be rewritten: 
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The rate at which it emits energy because of its acceleration is: 
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So the fraction of its energy that it radiates every second is: 
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   c) Carrying out the same calculations as in part (b), but now for an electron at the same 

speed and radius. That means the electron’s acceleration is the same as the proton, and 

thus so is the rate at which it emits energy, since they also have the same charge. 

However, the electron’s initial energy differs from the proton’s by the ratio of their 

masses: 
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So the fraction of its energy that it radiates every second is: 
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32.54: For the electron in the classical hydrogen atom, its acceleration is: 
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      Then using the formula for the rate of energy emission given in Pr. (33-49): 
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 which means that the electron would almost 

immediately lose all its energy! 
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   b) The hint basically answers the question. 
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33.8 (a)  

 

 
 

 

Apply Snell’s law at both interfaces. 

33.9: a) Let the light initially be in the material with refractive index na and let the third 

and final slab have refractive index nb Let the middle slab have refractive index n1 

11 sinsin :interface1st θθ nn aa =  

bbnn θθ sinsin:interface 2nd 11 =  

.sinsingives equations  two theCombining bbaa nn θθ =  

  b) For 
 slabs, where the first slab has refractive index na and the final slab has 
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 of angle on the depends  travelofdirection  final The.sinsingives This bbaa nn θθ =  

incidence in the first slab and the indicies of the first and last slabs. 
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   b) This calculation has no dependence on the glass because we can omit that step in the 
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33.11: As shown below, the angle between the beams and the prism is A/2 and the angle 

between the beams and the vertical is A, so the total angle between the two beams is 2A. 

 

 



33.12:  Rotating a mirror by an angleθ  while keeping the incoming beam constant leads  
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33.15: a) Going from the liquid into air: 
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   b) Going from air into the liquid: 
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33.17:   °=→ 7.48water, glassFor critθ  
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33.18: (a) 
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   (b) Same approach as in (a), except AC is now a glass-water boundary. 
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33.19: a) The slower the speed  of the wave, the larger the index of refraction—so air has a larger index 

of refraction than water. 
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   c) Air. For total internal reflection, the wave must go from higher to lower index of refraction—in this 

case, from air to water. 
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:soand,0.37 page,next  on the picture  theFrom °=rθ:33.22
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b) The light is linearly polarized.
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33.28: Let the intensity of the light that exits the first polarizer be I1, then, according to repeated 

application of Malus’ law, the intensity of light that exits the third polarizer is 
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on the third polarizer after the second polarizer is removed. Thus, the intensity that exits the third polarizer 

after the second polarizer is removed is 
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33.30:  a) All the electric field is in the plane perpendicular to the propagation direction, 

and maximum intensity through the filters is at 90° to the filter orientation for the case of 

minimum intensity. Therefore rotating the second filter by 90° when the situation 

originally showed the maximum intensity means one ends with a dark cell. 

   b) If filter P1 is rotated by 90°, then the electric field oscillates in the direction pointing 

toward the P2 filter, and hence no intensity passes through the second filter: see a dark 

cell. 

   c) Even if P2 is rotated back to its original position, the new plane of oscillation of the 

electric field, determined by the first filter, allows zero intensity to pass through the 

second filter. 

 

33.31: Consider three mirrors, M1 in the (x,y)-plane, M2 in the (y,z)-plane, and M3 in the 

(x,z)-plane. A light ray bouncing from M1 changes the sign of the z-component of the 

velocity, bouncing from M2 changes the x-component, and from M3 changes the y-

component. Thus the velocity, and hence also the path, of the light beam flips by 180°  
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33.33:  a) 331133222211 sinsinso,sinsinandsinsin θθθθθθ nnnnnn ===   
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1n  as it did in part (a). 

   c) For reflection, .ar θθ =  These angles are still equal if rθ  becomes the incident 

angle; reflected rays are also reversible. 

 



33.34: It takes the light an additional 4.2 ns to travel 0.840 m after the glass slab is 

inserted into the beam. Thus, 
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We can now solve for the index of refraction: 
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33.37: The velocity vector “maps out” the path of the light beam, so the geometry as 

shown below leads to: 
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Note: The radius is reduced by a factor of two since the beam must be incident at ,critθ  then reflect 

on the glass-air interface to create the ring. 
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So the distance along the bottom of the pool from directly below where the light 

enters to where it hits the bottom is: 
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33.42: The beam of light will emerge at the same angle as it entered the fluid as seen by 

following what happens via Snell’s Law at each of the interfaces. That is, the emergent 

beam is at °5.42  from the normal. 
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The ice does not come into the calculation since .sinsin90sin iceair iwc nnn θθ ==°  

   b) Same as part (a). 
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 So the angle below the horizontal is ,6.190.256.440.25 °=°−°=°−bθ and thus 

the angle between the two emerging beams is .2.39 °  
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33.48: a) For light in air incident on a parallel-faced plate, Snell’s Law yields: 
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   b) Adding more plates just adds extra steps in the middle of the above equation that 

always cancel out. The requirement of parallel faces ensures that the angle nn ′=′ θθ  and   

the chain of equations can continue. 

   c) The lateral displacement of the beam can be calculated using geometry: 
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33.49: a) For sunlight entering the earth’s atmosphere from the sun BELOW the 

horizon, we can calculate the angle δ as follows: 

     nnnnn bbabbaa ==⇒= where,sinsin)00.1(sinsin θθθθ  is the atmosphere’s 

index of refraction. But the geometry of the situation tells us: 
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     .22.0 °=δ  This is about the same as the angular radius of the sun, .25.0 °  

 

 



33.50: A quarter-wave plate shifts the phase of the light by °= 90θ . Circularly polarized 

light is out of phase by °90 , so the use of a quarter-wave plate will bring it back into 

phase, resulting in linearly polarized light. 
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33.52: a) The distance traveled by the light ray is the sum of the two diagonal segments: 
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33.53: a) The time taken to travel from point A to point B is just: 
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  Taking the derivative with respect to x of the time and setting it to zero yields: 
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33.54: a) n decreases with increasing λ , so n is smaller for red than for blue. So beam a 

is the red one. 

   b) The separation of the emerging beams is given by some elementary geometry. 
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   c) If two colors have different indices of refraction for the glass, then the deflection 

angles for them will differ: 

         

.0.52.472.522.520.60
2

0.60
sin)66.1(arcsin2

2.470.60
2

0.60
sin)61.1(arcsin2

violet

red

°=°−°=∆⇒°=°−
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


 °
=

°=°−






 °
=

δδ

δ
 

 



33.56:  

 
 

          Direction of ray A:θ  by law of reflection. 

          Direction of ray B: 

          At upper surface: αθ sinsin 21 nn =   

          The lower surface reflects at .α Ray B returns to upper surface at angle of 

incidence φαα sinsin: 12 nn =  

          Thus 

     φθ sinsin 11 nn =   

      θφ =  

           Therefore rays A and B are parallel. 

 
33.57:  Both l-leucine and d-glutamic acid exhibit linear relationships between 
concentration and rotation angle. The dependence for l-leucine is:   

           Rotation angle ( ) :isacidglutamic-forandml),(g/100)gml10011.0( dC°−=°  

           Rotation angle ( ) ml).(g/100)gml100124.0( C°=°  

 

33.58: a) A birefringent material has different speeds (or equivalently, wavelengths) in 

two different directions, so: 
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33.59: a) The maximum intensity from the table is at ,35°=θ  so the polarized 

component of the wave is in that direction (or else we would not have maximum intensity 

at that angle). 

     b) At )3540(cos
2

1
mW8.24:40 2

0

2 °−°+==°= pIIIθ   

         pII 996.0500.0mW8.24 0

2 +=⇒  (1). 

   At )35120(cos
2

1
mW2.5:120 2

0

2 °−°+==°= pIIIθ  

        pII 3

0

2
1060.7500.0mW2.5 −×+=⇒   (2). 

    Solving equations (1) and (2) we find: 

        .mW8.19989.0mW6.19
22 =⇒=⇒ pp II  

     Then if one subs this back into equation  (1), we find: 

        5.049 = .mW1.10500.0
2

00 =⇒ II  

 

33.60: a) To let the most light possible through 
 polarizers, with a total rotation of ,90°
we need as little shift from one polarizer to the next. That is, the angle between 

successive polarizers should be constant and equal to .
2


π
 Then: 
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33.61: a) Multiplying Eq. (1) by sin β  and Eq. (2) by sin α  yields: 

       (1): βαωβ sinsincossincossinsin tβαωt
a

x
−=  

       (2): αβωαβωα sinsincossincossinsin tt
a

y
−=   

       Subtracting yields: ).sincossin(cossin
sinsin

αββαω
αβ

−=
−

t
a

yx
   

       b) Multiplying Eq. (1) by cosβ  and Eq. (2) by cosα  yields: 

       

αβωαβωα

βαωβαωβ

cossincoscoscossincos:)2(

cossincoscoscossincos:)1(

tt
a

y

tt
a

x

−=

−=
 

        Subtracting yields: ).cossincos(sincos
coscos

αββαω
αβ

−−=
−

t
a

yx
 

        (c) Squaring and adding the results of parts  (a) and  (b) yields: 

        2222 )cossincos(sin)coscos()sinsin( αββααβαβ −=−+− ayxyx  

        (d) Expanding the left-hand side, we have: 

        
).cos(2)coscossin(sin2

)coscossin(sin2)cos(sin)cos(sin
2222

222222

βαβαβα
βαβαααββ

−−+=+−+=
+−+++

xyyxxyyx

xyyx
 

 The right-hand side can be rewritten: 

).(sin)cossincos(sin 2222 βααββα −=− aa  

        Therefore: ).(sin)cos(2 2222 βαβα −=−−+ axyyx   

        Or: .where,sincos2 2222 βαδδδ −==−+ axyyx  

          (e) ,0)(2:0 222 yxyxxyyx =⇒=−=−+=δ   which is a straight diagonal line. 
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=−+=

π
δ

π
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           This pattern repeats for the remaining phase differences. 

 



33.62: a) By the symmetry of the triangles, .and, A

b

B

a

B

r

C

a

B

a

A

b θθθθθθ ====  

   Therefore, .sinsinsinsin A

a

C

b

A

a

A

b

C

a

C

b nn θθθθθθ =====  

   b) The total angular deflection of the ray is: 

   .422 πθθθθθπθθ +−=−+−+−=∆ A
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a    

   c) From Snell’s Law, sin 
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   d) 
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   e) For violet: °=









−=










−= 89.58)1342.1(

3

1
arccos)1(

3

1
arccos 22

1 nθ  

   .8.402.139 violetviolet °=⇒°=∆⇒ θ  

             For red: °=









−=










−= 58.59)1330.1(

3

1
arccos)1(

3

1
arccos 22

1 nθ  

  .5.425.137 redred °=⇒°=∆⇒ θ   

             Therefore the color that appears higher is red. 

 



33.63: a) For the secondary rainbow, we will follow similar steps to Pr. (34-51). The 

total angular deflection of the ray is: 

      ,26222 πθθθθθπθπθθ +−=−+−+−+−=∆ A
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A

b
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a  where we have used 

the fact from the previous problem that all the internal angles are equal and the two 

external equals are equal. Also using the Snell’s Law relationship, we have: 
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coscos9)cos1()sin1( 2
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c) For violet: °=









−=










−= 55.71)1342.1(

8

1
arccos)1(

8

1
arccos 22

2 nθ  

  .2.532.233 violetviolet °=⇒°=∆⇒ θ  

For red: .94.71)1330.1(
8

1
arccos)1(

8

1
arccos 22

2 °=









−=










−= nθ  

 .1.501.230 redred °=⇒°=∆⇒ θ   

Therefore the color that appears higher is violet. 

  


