
Hyperspectral Remote Sensing

Exercise: Using IDL

Author
Harald van der Werff

Data needed
aviris_flevoland_ref_scaled.bsq

Introduction
A large part of ENVI functionality comes from IDL (http://www.ittvis.com/idl/).
IDL stands for Interactive Data Language and is an object-based programming
language that is widely used for data analysis, visualization and cross-platform
application development. The combination of IDL and ENVI is a powerful tool for
image and spectral processing. Not only can self-made IDL scripts be run from
ENVI, but also can IDL-based programs make use of routines available in ENVI.
Moreover, ENVI routines can be used in so-called ‘batch processing’, which is
performing a linear sequence of ENVI processing tasks in a non-interactive manner.
You can write a batch mode routine (an IDL program) and call it from the ENVI
menu system to perform the tasks, or you can start batch mode from the IDL
command line.

The first part of this exercise consists of a 'walk through' which explains how to
write IDL functions and how to apply these in ENVI using Band Math. After that, you
will create a script to calculate rededge position for determining vegetation stress.

Compiling IDL code from ENVI
IDL code can be typed using your favorite text editor, as long as the text can be saved
as a plain ASCII (text) file with file extension ‘.pro’. (Take care that on the Windows
platform, some editors tend to save files with a hidden extension . txt: This will not
work, the extension has to be '.pro'.)

IDL modules have to be compiled (rewritten in machine code) for use in ENVI,
which can be done in two ways:

1. Use “File/Compile IDL Module“ from the ENVI menu to load your IDL code.
2. An IDL program can be placed in the 'save_add' directory in the ENVI

program directory. All modules in this directory are compiled when ENVI is
started. When you do not have writing privileges for this directory, another
directory can be selected by changing the preferences from the ENVI menu.
Note that if you change a module, you still have to compile it again using
“File/Compile IDL Module“ from the ENVI menu. This option has mainly use
when an IDL function is stable and not being (newly) developed.

Using IDL Page 1 of 6

http://www.ittvis.com/idl/

Hyperspectral Remote Sensing

Writing IDL functions
In this tutorial, we will build a simple function that calculates the Normalized
Difference Vegetation Index (NDVI) using a red and a near-infrared image band.

IDL functions consist of a statement that declares the function and a statement that
ends the function:

function my_ndvi,band_nir,band_red

end

In the declaration of a function comes the name of the function, which is 'my_ndvi'
in this example. Also listed and separated by comma's are the variables that will
contain the input data. In this example, the input variables are 'band_nir' and
'band_red'. While these two variables are used to get data into the program, a
separate statement has to be added to return data from the IDL module to ENVI:

function my_ndvi,band_nir,band_red

 return, result
end

The function is now ready to get data and to return the result, the only thing that
needs to be added are the mathematical expression to calculate NDVI:

function my_ndvi,band_nir,band_red

 numerator = band_nir - band_red
 denominator = band_nir + band_red
 result = numerator / denominator

 return, result
end

In this equation, we first subtract and add the NIR and Red image bands to make the
numerator and denominator. In a separate statement, the numerator is divided by
the denominator.

Although this is a working example, it is possible to shorten the code:

function my_ndvi,band_nir,band_red
 result = (band_nir - band_red) / (band_nir + band_red)
 return, result
end

Mathematical convention is that multiplication and division are done before addition
or subtraction. Adding the brackets forces the statement to first to the addition and
subtraction (making the numerator and denominator values) and only then do the
ratio to create the resulting NDVI value.

The function can be saved as 'my_ndvi.pro' and compiled using ENVI.

Using IDL Page 2 of 6

Hyperspectral Remote Sensing

To test the function, open in ENVI image 'aviris_flevo_ref_scaled.bsq'. Call the
function you just made from Band Math and assign image bands to the variables by
selecting a variable name with the mouse and then selecting an image band:

The result of the calculation is returned as an image and appears in the ENVI
'Available Band List'. Examine the result, it looks like something has gone wrong, the
entire image is black! You can examine the pixel values by using the 'Cursor Location/
Value' tool in ENVI:

Using IDL Page 3 of 6

Hyperspectral Remote Sensing

This is a result of an other mathematical conventions. The input image is stored in
bytes, which are whole numbers (e.g. 0, 5, 21, 36, 255). When a whole numbers is
divided by another whole number, the result will also be rounded off to a whole
number. See the following example:

You would expect the result of division '4 / 3' to be '1.33333', but it is rounded to '1'.
The rounding can be avoided when one of the variables, or both, are real or 'floating
point' numbers (e.g. 1.2, 0.5, 3.0). In the following example, the denominator is
converted from a whole number to a real number using the function float():

As we do not know in advance if an input image for our function will consist of whole
numbers (integer, byte) or floating point numbers (float, double or complex), we
have to modify the function so it will always make this conversion for us:

function my_function, band1,band2
 result = (band_nir-band_red) / float(band_nir+band_red)
 return, result
end

This addition makes the denominator a floating point number before the division is
done, automatically making the result also a floating point number.

Using IDL Page 4 of 6

Hyperspectral Remote Sensing

When the IDL source file has changed, it needs to be re-compiled to get the latest
version into computer memory. Use ENVI to compile the code and repeat the
application of the function to the AVIRIS image. You will see that the result has now
real numbers which show much more detail:

A last tip is to add comments to your code to explain other users of your IDL function,
and to help yourself remember what each line in the code means. A line can in the
code be declared as 'comment' by starting the line with a semi-colon:

The final function should hence look something like this:

function my_function, band1,band2
 ; this function calculates the NDVI value
 ; of a NIR and red image band
 ; the result is automatically casted
 ; to floating point values
 result = (band_nir-band_red) / float(band_nir+band_red)
 return, result
end

Compare the result of this function with the default NDVI module (transform – NDVI).
Do you notice any differences? Does the function work correct?

Using IDL Page 5 of 6

Hyperspectral Remote Sensing

A routine to calculate red edge position
In the second part of this exercise, a function has to be written that calculates the
rededge position.

The values of the AVIRIS reflectance image used in this exercise have been rescaled.
This is often done by data providers to store the data as integer values rather than
floating point values. Unsigned integers are a 16-byte data type while floating points
are a 32-bit, taking up exactly twice as much disk space. To reduce the disk usage but
keep a enough high dynamic range of data values, the image is rescaled by a factor
100, i.e., 100% reflectance = 100*100 DN = 10,000 DN in image values.

The red edge is calculated in two steps. First, calculate the reflectance at the
inflexion point, interpolated from the nearby spectral bands:

Rℜ=  R670+R780  / 2

Secondly, calculate the red-edge wavelength (Lre):

Lℜ= 70040∗   Rℜ− R700  /  R740− R700  

Write a function that calculates the red edge position from the four image bands.
Do not forget to add comments to the code.

Use the image 'aviris_flevo_ref.bsq' as input. Investigate the output and calculate
image statistics (statistics – image statistics).

Assignment: Submit in a short report the source code of the red edge function,
with comments, and a short comment on the minimum, maximum and mean red-
edge values produced by this function.

Using IDL Page 6 of 6

