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ABSTRACT: 
 
The car manufacturing industry has been conducting a considerable effort to allow future vehicles to communicate, either between 
them or with a road infrastructure, in order to improve driving safety. As the position of each vehicle is an essential attribute of the 
proposed application protocols (to avoid collisions at blind intersections, for instance), and is also fundamental to support complex 
network protocols based on mobile wireless nodes with very limited transmission range, such communicating vehicles will be 
further equipped with GPS receivers. This massive distribution of GPS sensors, in conjunction with a free of charge communication 
infrastructure that allows accessing the information collected by such devices, will create a powerful new medium of remote sensing 
of geographical information. In this paper we address the automatic road network extraction based on this vehicular sensing 
infrastructure where the sensor in play is just the GPS receiver. We have resorted to the widely available GPS/GPRS tracking 
technology, heavily used by trucking companies, in order to obtain more than 30 million GPS points to construct the road map of an 
interesting city of Portugal, called Arganil, in an accurate, inexpensive and permanently up-to-date manner. Our algorithm is 
implemented using spatial SQL queries to aggregate data from multiple traces to produce a weighted-mean geometry of road axles, 
diluting GPS errors. In order to evaluate our extracted road network, we have compared its geometric and topological layers with a 
vectorial road map extracted from high resolution satellite images. Results show a highly accurate correspondence between them in 
all areas where a sufficient number of GPS traces have been collected. 
 
 

1. INTRODUCTION 

Spatial data acquisition is one of the most expensive and time-
consuming tasks in the deployment and updating of Geographic 
Information Systems (GIS). A few decades ago, topographic 
surveys and aerial images interpretation were the main sources 
of spatial information for cartographic purposes. Because of the 
complexity of such processes, cartographic updating was not 
done very often, but only when specific needs or major 
landscape changes mandated the acquisition and processing of 
new spatial data. More recently, the constant advances in 
Remote Sensing have allowed a fast-paced production of large 
volumes of spatial information. Several remote sensors orbiting 
Earth are now able to easily acquire images suitable for 
monitoring the intra-urban landscape changes, as those aboard 
satellites such as  SPOT-5, CBERS-2b, IKONOS II, QuickBird 
2, OrbView and Eros [1].   
An alternative to such remote sensing technologies is emerging 
in the form of standard on-site mobile sensors, supported by the 
ubiquitous deployment of positioning technologies, such as the 
Global Positioning System (GPS).  GPS devices are capable of 
assigning a geographic position to every type of data collected 
by on-site sensors. The wide popularity of GPS-based in-car 
navigation systems, together with the typical myriad of sensors 
installed in modern vehicles, is creating a powerful new 
infrastructure for the acquisition of spatial data through a 
distributed vehicular network.     
Motivated by the improvement of driving safety, the 
automotive industry has been installing a variety of sensors in 
modern production vehicles, capable of providing several data 
regarding the vehicular behaviour, as well as data related to the 
environment where the vehicle moves. In addition, the car 

manufacturing industry is conducting a major effort towards the 
development of a distributed, peer-to-peer and infrastrutureless 
communication network composed of vehicles and based on 
Digital Short-Range Communications (DSRC) [2]. Such 
network is being defined to allow both vehicle-to-vehicle and 
vehicle-to-road-infrastructure communication. The combination 
of a massive distribution of positioning sensors and a charge-
free communication mean that allows accessing the information 
collected by vehicular sensors is thus able to create a novel and 
powerful tool for the acquisition of spatial data. Based on the 
remote sensing of a large network of vehicles, it is possible to 
build detailed maps of highly dynamic geographic information, 
related to the road network, such as traffic conditions,  
temperature and wetness of road pavement, air pollution levels, 
or even the presence of potholes on the road. 
  Much less dynamic, but also interesting, is the information 
that allows mapping and updating the actual road network based 
on vehicular infrastructure of remote sensing. The goal is not 
only the acquisition of road axle geometries, but also their 
characterization in terms of topological connectivity, traffic 
rules and speed patterns, in an accurate and permanently up-to-
date manner.  
Several projects have been developed with the goal of making a 
better use of the data collected through GPS receivers [3-7]. 
One of the most important of these projects is the 
OpenStreetMap that hosts a collaborative network of GPS 
traces for the assisted construction of road maps. Despite the 
increasing research around this area, very few references relax 
the need of a base map in a non-assistive approach [3,4]. 
Previous work has focused more on refinement issues and 
updating of existing cartography. 



 

In this paper we address the automatic road network extraction, 
where the sensor in play is just the GPS receiver, based on 
millions of points collected by a fleet of vehicles. Given the 
non-existence today of the described vehicular networks, we 
resorted to the widely available GPS/GPRS tracking 
technology, heavily used by trucking companies. The constant 
bandwidth increase in cellular networks is allowing such 
tracking technology to transmit position reports "in-raw", i.e., 
as received by the on-board GPS unit, with a point every 
second. The automatic road network extraction algorithm is 
implemented using spatial SQL queries to aggregate data from 
multiple traces to produce a weighted-mean geometry of road 
axles, diluting GPS errors. It does not require a base map and 
any editing from users. The paper is organized as follows: the 
next section describes the process of collecting and filtering 
GPS data. Section 3 presents the road network extraction 
algorithm. Section 4 reports the experimental results. Section 5 
introduces a technique for inferring road classification. We end 
by outlining some conclusions.   
 
 

2. DATA COLLECTION AND FILTERING 

The automatic construction of road map from GPS traces 
requires the availability of a large data set collected over the 
area of interest. In our implementation, we used more than 30 
millions of GPS points, collected in real-time by a vehicle 
tracking company, using a temporal detail of one point per 
second. Such level of detail is particularly important for the 
representation of the road network, since it allows keeping the 
geometry continuity of the vehicular trajectories.  
The position of each point is defined by its geographic 
coordinates: longitude, latitude and altitude. To meet our 
purpose of accurate road map construction, we extended the 
protocol to also include information about the number of 
satellites and the horizontal dilution of precision (HDOP). We 
also stored additional relevant information, such as  speed of the 
vehicle, its azimuth and the time of the position reading. We 
collected a total of 371600 km of vehicular traces, spatially 
distributed in Portugal. Our implementation was tested in the 
city of Arganil (Fig.1). 
 

   Figure 1. GPS Traces on Arganil 
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Figure 2. Speed distribution 

 
Because of GPS errors, it is necessary to rely on several 
processes that allow the elimination of inconsistent data, aiming 
at obtaining higher quality input data to our algorithm. We have 
thus established three filters, where the first one is based on 
speed information. Points collected at speeds lower than 6 km/h 
were not considered to be sufficiently accurate for the 
automatic construction of road maps. As a result of this filter, 
we have eliminated 15,31% of the collected points. Figure 2 
shows the speed distribution on our data set. 
Our second filter is based on the HDOP value, which is a 
measure quantifying the degradation level of the horizontal 
positioning accuracy of the GPS (2D-based positioning). This 
value is mainly determined by the relative geometry of the 
visible satellites when the positioning reading was taken. A low 
HDOP value means a more accurate horizontal positioning. The 
distribution of HDOP values in our data set is shown in Fig. 3. 
The filter has been configured to eliminated points with an 
HDOP value higher than 2. 
 

 
Figure 3. HDOP distribution 

 
Our third filter in the pre-processing phase of our data is based 
on the number of satellite used in the positioning. When more 
than 4 satellites are used for the positioning, the redundant 
satellites can serve for the detection of erroneous readings, thus 
increasing the accuracy of the positioning. The distribution of 
the number of satellites used to obtain a positioning in our data 
set is shown in Fig.4. The filter is set to eliminate points 
collected using a number of satellites lower than 5. 
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Figure 4. Tracked satellites distribution 

 
In addition to the filters mentioned above, the pre-processing 
phase has an extra module that is responsible for the 



 

identification of large intervals of time between consecutive 
points of the same vehicular trace, which are either caused by 
obstacles to the reception of the signal broadcasted by the 
satellites, or by the elimination of points from previous filters. 
Such large intervals can erroneously affect the geometry of the 
road network and we thus divide vehicular traces where two 
consecutive points are separated by more than 7 seconds into 
two distinct traces. 
The last step in our pre-processing phase consists in the 
simplification of the GPS traces in order to cope with 
performance issues of our algorithm and minimize the amount 
of memory required to store the vehicular traces.  
Our traces have been simplified using the Douglas-Peucker 
algorithm [8], resulting in the elimination of 67% of the 
collected points (Table 1). The maximum distance allowed for 
the elimination of point through this algorithm was of 1 meters. 
 
 Original 

traces 
Simplified 
traces 

Elimination 
rate 

Total number of points 35041489 11628278 67% 
kms 511067,34 510740,69 0,06% 
  

 Table 1.  Line Simplification by Douglas-Peucker algorithm.  
 

 
3. ROAD NETWORK EXTRACTION 

The main goal of our algorithm is the construction of a graph 
representing the road network, where the roads are represented 
by edges and the intersections are represented by nodes. The 
algorithm is implemented through spatial SQL queries to 
aggregate data from multiple traces, in order to produce an 
weighted geometry of road axles, diluting errors from the GPS 
receivers. The input data is stored in two tables of a spatial 
database: traces and points. 
The algorithm is divided in five steps: rasterization, centroid 
generation, geometric connectivity of the centroids, topologic 
connectivity (node-edge topology) and turn-table construction. 
We next describe each of these steps. 
 
3.1 Rasterization 

Until May, 2000, the real-time positioning of a point, through a 
navigation GPS receiver, provided a planimetric accuracy better 
than 100 meters. Since then, with the ending of the Selective 
Availability (technique used to degrade the accuracy of the 
positioning), such value became, on average, better than 15 
meters. Even with this significant improvement, the attained 
accuracy is not considered to be sufficient for a valid geometric 
representation of the road network. Aimed at an accurate and 
automatic construction of road maps, we propose the spatial 
aggregation of a large set of GPS traces through a rasterization 
process. 
The term rasterization is used in the context of the 
transformation of a vectorial representation into a matrix-based 
representation. In the work described in this paper, the 
rasterization process enables the transformation of the vectorial 
layer of GPS traces into a raster layer of 5-meter-resolution 
cells. For each cell, we assign a value that translates the number 
of GPS traces that intersect it, as returned by the following SQL 
query: 
 

SELECT m.id, COUNT(t.id) FROM traces t, matrix m WHERE 
ST_Intersects(t.trace,m.pixel) GROUP BY m.id 

 

  
Figure 5. Rasterization process: cells  

represented by an unique symbol 
 
Figure 5 presents the set of cells intersected by one or more 
GPS traces. Such set represents, in a fuzzy manner, the roads 
travelled by the vehicular sensors, resulting in blurred areas in 
places where the road network is especially complex. However, 
if we use the attribute that holds the number of traces 
intersecting each of the cells, to vary its color intensity 
(depicted using different level of gray), it becomes possible to 
easily identify the road axles (Fig.6) 
 

  
Figure 6. Rasterization process: cells represented  

by a gray scale based on their values 
 

The probability of existing a road in a given cell is proportional 
to the value of the attribute of the cell. Similarly, cells holding a 
low counting value of intersecting traces represent disperse 
vehicular trajectories or low-travelled roads. The rasterization 
step thus performs an highly refined filtering of our data set, 
using a process based on spatial aggregation together with 
sampling correction. This approach becomes particularly 
important to the representation of small roundabouts, nearby 
roads and other complex parts of the road network.  
Furthermore, the rasterization process allows a better 
representation of wide roads (e.g. roads with two ways 
separated by a central structure), becoming possible the 
identification of a road axle in each of the directions (Fig.7). 
 

 
Figure 7. Identification of road axles in wide roads 

 



 

3.2 Centroid Generation 

Centroids can be defined as the points belonging to the axle of 
the road. The first step for its generation is the descendent 
ordering of the cells generated in the rasterization process, 
according to the attribute value of each.  As explained 
previously, the higher the value of a cell, the higher the 
probability of existing a road on it. In our implementation, only 
cells presenting a value higher than 20, i.e. cells with at least 20 
vehicular traces intersecting it, are classified as cells generating 
centroids. After identifying such cells, the position of candidate 
(xcent,ycent) is given by: 
     xcent = Σ (xi*vi)/ Σvi 
     ycent = Σ (yi*vi)/ Σvi 

(1)

 
where     xi, yi = geographic coordinates of the center of mass of    

the cell with higher value and its adjacent cells;  
               vi = attribute value of such cells. 
   
The candidate centroids are only added to the database if there 
is no previous centroid within a distance di of them. The 
distance allowed for the addition of a candidate centroid is 
related to the attribute value of the cell to which the candidate 
centroid belongs. The higher the value, the lesser distance 
between neighbour centroids. Such constraint is designed to 
minimize the zigzag effect between centroids representing the 
same road axle. Table 2 presents the correlation between the 
number of cells generated in the rasterization process and the 
total number of centroids generated. 
 

Total of cells 
(value > = 1) 

Generating cells 
(value >20) 

Generated 
centroids 

Rate 
 

1.118.821 266860 32310 12,11% 
  

 Table 2.  Centroids Generation.  
 
The output of the second step of our algorithm is shown in 
figure 8. 
 

 
Figure 8. Centroids Generation 

 
3.3 Geometric Connectivity 

The third step in our algorithm deals with the establishment of 
geometric connectivity between centroids, according to the 
following spatial query: 
 

SELECT c1.id,c3.id FROM centroides c1,centroides c2, centroides c3 WHERE 
c2.id=id AND c1.id<>c3.id AND c1.id<>c2.id AND c3.id<>c2.id AND 

ST_DWithin(c1.centroide,c2.centroide,dist) AND 
ST_DWithin(c3.centroide,c2.centroide,dist) AND EXISTS (SELECT t.id from 

trajetos t WHERE ST_DWithin(trajeto,c1.centroide,1.5) AND 

ST_DWithin(trajeto,c2.centroide,1.5) AND ST_DWithin(trajeto,c3.centroide,1.5) 
AND ST_line_locate_point(trajeto,c2.centroide) BETWEEN 

ST_line_locate_point(trajeto,c1.centroide) AND 
ST_line_locate_point(trajeto,c3.centroide)) ORDER BY 

ST_Distance(c1.centroide,c2.centroide), ST_Distance(c3.centroide,c2.centroide) 
 
According to this query, the connection between adjacent 
centroids is allowed when one or more GPS traces pass near 
them, with a maximum distance of 1.5 meters. This step leads 
to the geometric representation of a road (Fig.9). 
 

 
Figure 9. Geometric connectivity between adjacent centroids. 

 
3.4 Topological Connectivity 

The fourth step in our algorithm addresses the topological 
connectivity of the road network (edge-node topology). For this 
step it is essential that the road network representation is 
consistent with the network model, requiring that intersections 
are represented by nodes and road axles (connecting neighbor 
nodes) are represent by edges.   
The identification of nodes is done through a spatial query that 
derives a list of centroids located at the end points of at least 
three distinct segments. Such centroids are then classified as 
nodes of the road network being constructed. We then connect 
the existing segments between two neighbour nodes, deriving 
the set of edges of our network model. Figure 11 illustrates the 
results of this step.  
 

 
Figure 10. Topological connectivity: road network  

as a set of nodes and links 
 

3.5 Turn Table Construction 

Topological connectivity is the key element in a transportation 
network, since it determines the mobility patterns in such a 
network. However, the typical edge-node model can include 
nodes which do not necessarily represent a real intersection 
(typically in scenarios with three dimensional connectivity 
through elevated roads);  or nodes that geometrically connect 
uni-directional edges, where traffic rules disallow specific 



 

maneuvers from one edge to another over such geometric 
connectivity. The fifth step in our algorithm of automatic road 
map construction addresses the derivation of the turn table, as 
mandated by traffic rules.  
To construct the turn table, we implemented an adapted module 
of map-matching that uses the GPS traces to extract traffic rules 
of inter-edge connectivity. The turn table consists of two 
attributes: the identifier of the source edge; and the identifier of 
the destination edge. Figure 11 presents the final structure of 
our spatial database supporting the algorithm described in this 
paper. 
 

 
Figure 11. Spatial Database structure 

  
 

4. EXPERIMENTAL RESULTS 

Using the algorithm for automatic road network extraction, we 
produced a vectorial road map of the municipality of Arganil. 
The results show an accurate overlap of the extracted road 
network with that from Google Maps, in every place where a 
sufficient number of GPS traces has been collected (Fig.12).  
 

 
Figure 12. Overlapping between the extracted  

road network and Google Maps 
 

The evaluation phase of the results obtained was performed by 
comparing the geometric and topological layers of the extracted 
road network with those from vectorial maps provided by the 
map-making company InfoPortugal, S.A., which are 
constructed by manually processing orthorectified aerial 
images, with a resolution of 25cm² per pixel. 
Coverage evaluation is done through three main metrics: total 
number of kilometers of roads generated by the algorithm in the 
zone of relevance (Table 3); total number of kilometers of roads 
to which a match is found in InfoPortugal's map; total number 
of kilometers of roads that are not present on InfoPortugal's 
map (cartographic updating). 
 
  
 
 
 

 
 InfoPortugal's 

map  
Extracted road 
network 

Percentage 

Total of kms 522,778 421,82 80,69% 
  

Table 3.  Extracted road network statistics  
 

The association between the extracted road axles and the 
existing road axles in InfoPortugal's map (Table 4) is 
determined through a map matching algorithm.  
Figure 13 shows the correspondence between the extracted road 
network (in black color) and InfoPortugal's map (in red color). 
 

 
Figure 13. Correspondence between the extracted road network, 

in the municipality of Arganil, and InfoPortugal's map. 
 
 Total of 

km 
Correspondence 
(km) 

Correspondence 
Rate 

Extracted road 
network 

421,82 349,87 82,94% 

  
 Table 4. Correspondence between the extracted roads and 

InfoPortugal's map  
 
One of the most important results from the process of automatic 
road network extraction based on vehicular GPS traces consists 
in the identification of roads that are still non-existent in current 
maps, as shown in Fig. 14. This aspect shows the ability of the 
algorithm to provide an inexpensive and highly accurate way of 
constantly performing cartographic updating.  
Table 4 presents a correspondence of 82,94% between the 
kilometers of roads that were extracted and those from the base 
map. Hence, the remaining 17,06% represent the percentage of 
cartographic updating, i.e., the extraction of non-existing roads 
in the base map. 
 

 
Figure 14. Cartographic Updating 

 
The evaluation of the accuracy of the geometry of the extracted 
road network is done in a continuous manner: the average 
distance between the extracted roads and the corresponding 
roads in the base map is obtained through the computation of 



 

the area between the two, divided be the average length of the 
two geometric representations (Fig.15). This method presents a 
more realistic evaluation as compared to discrete based 
measurements.  
 

     
Figure 15. Evaluation of geometric accuracy: area between  

two representations of the same road 
The resulting average distance was of 1,43 meters between the 
two representations of the same roads. 
The evaluation of the topology of the extracted road network is 
done through two main metrics: the number of nodes that have 
been extracted that match nodes in the base map; and the traffic 
direction of each extracted edge, compared to the direction of 
the associated edge in the base map (Tables 5 and 6). 
 

Extracted nodes Matching nodes Percentage 

596 458 77% 

  
Table 5. Correspondence between extracted and base map 

nodes 
 

The nodes which have no matching node on the base map do 
not necessarily represent false intersections. Such nodes can 
result from junctions of wide roads into more narrow segments, 
where the algorithm of automatic extraction usually created a 
non-existent node in the base map. Such nodes can also result 
from cartographic updating and the identification of 
intersections with non-existent road in the base map. 

 
Number of 

tested links 

Correctly classified 

links 

Rate of correct 

classification 

1206 1158 96% 

  
 Table 6. Edge direction  

 
The last evaluation concerns the traffic rules between the 
generated roads. The extracted enforcements between 
connectivity of specific edges, stored in the direction table, 
were checked against the Do Not Enter signs of the base map     
(table 7).  
  

Do Not Enter 

signs 

Inconsistent traffic rules 

in the direction table 

Average error 

50 1 0,02 % 

  
Table 7. Traffic rules evaluation 

 
5. CONCLUSIONS 

In this paper we have presented an algorithmic methodology for 
the automatic extraction of road networks based on vehicular 
GPS traces. The current availability of GPS receivers for 
navigation allows a large-scale acquisition of spatial data 
related to the road network. The spatial aggregation of 
information produced by multiple GPS traces allows the 
construction of an weighted mean geometry of roads, followed 

by the determination of the respective topological connectivity 
and the identification of traffic rules associated to the extracted 
road segments.  
The methodology we presented has some relevant advantages 
as compared to the traditional approach based on road network 
extraction by the manual processing of high-resolution aerial 
images. Such advantages are translated essentially in the 
simplification of the process of cartography updating, that is 
able to be done in an accurate, inexpensive and frequent 
manner. Furthermore, even through the use of commercial GPS 
receivers, which present an average accuracy of 15 meters, it is 
possible to extract the geometry of roads with an accuracy 
better than 1.5 meters, making use of the aggregation of a large 
amount of readings. The rasterization process, explained in 
section 3, works as a natural filter, eliminating outliers and 
enabling the accurate determination for the position of 
centroids, resulting in an higher accuracy for the geometry of 
the extracted road network. Another advantage of this approach 
is the ability to detect roads which are not visible from aerial 
images, because of the presence of clouds, tree of shadows. In 
addition, the use of a large number of GPS traces makes it 
possible to extract the geometric representation of detailed 
features of the road, such as small roundabouts ou nearby 
parallel roads, without having to resort to much more expensive 
devices, such as differential GPSs.  
Our approach deals not only with the geometry of roads, but 
also with the associated characterization in terms of traffic rules 
and speed patterns, in an accurate and always up-to-date 
manner. Such characterization cannot be obtained by the 
processing of satellite or air-Bourne images. 
The existence of vehicles equipped with a variety of sensors, 
together with a large-scale distribution of GPS receivers and the 
development of an inter-vehicular ad hoc network, will enable 
the arrival of a novel and powerful remote sensing 
infrastructure, suited to provide highly detailed geographic 
information about and around the space of roads. This advent is 
creating an interesting and rapidly expanding area of research, 
built around the theme of vehicular sensing. 
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